Precision diagnostics

Technologies for healthcare
and life sciences

2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000 | 1999 | 1998 | 1997 | 1996 | 1995 | 1994

 

2017

[1] Capillary-driven microfluidic chips for miniaturized immunoassays: Efficient fabrication and sealing of chips using a “chip-olate” process
Temiz, Y., Delamarche, E.
Microchip Diagnostics, Part A Microchips for Protein Bioassays,  in Methods in Molecular Biology, V. Taly, J.-L. Viovy, S. Descroix (Eds), Springer, Vol. 1547, pp. 25–36, 2017.

[2] Capillary-driven microfluidic chips for miniaturized immunoassays: Patterning capture antibodies using microcontact printing and dry-film resists
Temiz, Y., Lovchik, R. D., Delamarche, E.
Microchip Diagnostics, Part A Microchips for Protein Bioassays,  in Methods in Molecular Biology, V. Taly, J.-L. Viovy, S. Descroix (Eds), Springer, Vol. 1547, pp. 37–47, 2017.


2016

[1] Hydrodynamic thermal confinement: creating thermo-chemical microenvironments on surfaces
Cors, J.F., Stucki, A., Kaigala, G.V.
Chemical Communications 52, 13035–13038, 2016.

[2] Centimeter-scale surface interactions using hydrodynamic flow confinements
Taylor, D.P., Zeaf, I., Lovchik R.D., Kaigala, G.V.
Langmuir 32(41), 10537–10544, 2016.

[3] Rapid subtractive patterning of live cell layers with a microfluidic probe
Kashyap, A., Cors, J.C., Lovchik, R.D., Kaigala, G.V.
J. Vis. Exp. 115, e54447, 2016.

[4] Deep-reaching hydrodynamic flow confinements (DR-HFC): µm-scale liquid localization for open surfaces with topographical variations
Oskooei, A., Kaigala, G.V.
IEEE Trans. Biomedical Eng. 99, 2016.

[5] Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe
Kashyab, A., Autebert, J., Delamarche, E., Kaigala, G.V.
Scientific Reports 6, 29579, 2016.

[6] Delivery of minimally dispersed liquid interfaces for sequential surface chemistry
Ostromohov, N., Bercovici, M., Kaigala, G.V.
Lab Chip 16, 3015–3023, 2016.

[7] Micro fluorescence in situ hybridization (µFISH) for spatially multiplexed analysis of a cell monolayer
Huber, D., Autebert, J., Kaigala, G.V.
Biomedical Microdevices 18(40), 2016.

[8] Convection-enhanced biopatterning with hydrodynamically confined nanoliter volumes of reagents
Autebert, J., Cors, J., Taylor, D., Kaigala, G.V.
Anal. Chem. 88(6), 3235–3242, 2016.

[9] Single-bead arrays for fluorescence-based immunoassays on capillary-driven microfluidic chips
Temiz, Y., Lim, M. and Delamarche, E.
Proc. SPIE 9705, 2016.


2015

[1] Passive removal of immiscible spacers from segmented flows in a microfluidic probe
Kooten, X.F., Autebert, J. and Kaigala, G.V.
Appl. Phys. Lett. 106, 074102, 2015.

[2] Arraying single microbeads in microchannels using dielectrophoresis-assisted mechanical traps
Tirapu-Azpiroz, J., Temiz, Y. and Delamarche, E.
Appl. Phys. Lett. 107, 204102, 2015.

[3] Lab-on-a-chip devices: How to close and plug the lab?
Temiz, Y., Lovchik, R. D., Kaigala, G. V. and Delamarche, E.
Microelectron. Eng. 32, 156–175, 2015.


2014

[1] “Chip-olate” and dry-film resists for efficient fabrication, singulation and sealing of microfluidic chips
Temiz, Y. and Delamarche, E.
J. Micromech. Microeng. 24, 097001, 2014.

[2] Heterogeneous integration of gels into microfluidics using a mesh carrier
Eker, B., Temiz, Y. and Delamarche, E.
Biomed. Microdevices 16, 829–835, 2014.

[3] The floating microfluidic probe: Distance control between probe and sample using hydrodynamic levitation
Hitzbleck, M., Kaigala, G. V., Delamarche, E. and Lovchik, R. D.
Appl. Phys. Lett. 104, 263501, 2014.

[4] Capillary-driven microfluidic chips with evaporation-induced flow control and dielectrophoretic microbead trapping
Temiz, Y., Skorucak, J. and Delamarche, E.
Proc. SPIE 8976, 89760Y, 2014.

[5] A compact and versatile microfluidic probe for local processing of tissue sections and biological specimens
Cors, J. F., Lovchik, R. D., Delamarche, E. and Kaigala, G. V.
Rev. Sci. Instrum. 85, 034301, 2014.

[6] Hierarchical hydrodynamic flow confinement: Efficient use and retrieval of chemicals for microscale chemistry on surfaces
Autebert, J., Kashyap, A., Lovchik, R. D., Delamarche, E. and Kaigala, G. V.
Langmuir 30, 3640–3645, 2014.

[7] Nested hydrodynamic flow confinement and liquid recirculation: microscale probing and patterning of biological surfaces
Autebert, J., Cors, J. Kashyap, A., Lovchik, R. D. Delamarche, E and Kaigala, G. V.
Proceedings µTAS 2014, San Antonio, 99–101.


2013

[1] Advanced Capillary Soft Valves for Flow Control in Self-Driven Microfluidics
Hitzbleck, M. and Delamarche, E.
Micromachines 4(1), 1–8, 2013.

[2] Flock-based microfluidics
Hitzbleck, M., Lovchik, R. D. and Delamarche, E.
Adv. Mater. 25, 2672–2676, 2013.

[3] Reagents in Microfluidics: an “in” and “out” Challenge
Hitzbleck, M. and Delamarche, E.
Chem. Soc. Rev. 42, 2013.

[4] Pharmacology on microfluidics: Multimodal analysis for studying cell-cell interaction
Delamarche, E., Tonna, N., Lovchik, R. D. and Matteoli, M.
Curr. Opinion Pharmacology 13(5), 821–828, 2013.

[5] Compact microfluidic probe system with self-aligned mounted heads for direct use on inverted microscopes
Cors. J. F., Lovchik, R. D., Delamarche, E. and Kaigala, G. V.
Proceedings µTAS 2013, Freiburg, 1625–1627.

[6] Flock-based microfluidic devices with flow control, reagent integration and multiplexing for simple assays
Hitzbleck, M. and Delamarche, E.
Proceedings µTAS 2013, Freiburg, 648–650.

[7] Dielectrophoretic trapping of beads in compact capillary-driven systems with multiwall electrodes
Temiz, Y., Kaigala, G. V. and Delamarche, E.
Proceedings µTAS 2013, Freiburg, 979–981.

[8] A microfluidic architecture for efficient reagent integration, reagent release, and analyte detection in limited sample volume
Eker, B., Hitzbleck, M., Lovchik, R. D., Temiz, Y. and Delamarche, E.
Proceedings µTAS 2013, Freiburg, 1150–1152.


2012

[1] Microfluidics in the open space for performing local chemistries on biological interfaces
Kaigala, G.V., Lovchik, R.D. and Delamarche, E.
Angew. Chem. 51, 11224–11240, 2012.

[2] Overflow microfluidic networks: application to the biochemical analysis of brain cell interactions in complex neuroinflammatory scenarios
Bianco, F., Tonna, N., Lovchik, R.D., Mastrangelo, R., Morini, R., Ruiz, A., Delamarche, E. and Matteoli, M.
Anal. Chem. 84, 9833–9840, 2012.

[3] Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension
Coyer, S. R., Singh, A., Dumbauld, D. W., Calderwood, D. A., Craig, S., Delamarche, E. and Garcia, A. J.
J. Cell Science 125, 5110–5123, 2012.

[4] Micro-immunohistochemistry using a microfluidic probe
Lovchik, R. D., Kaigala, G. V., Georgiadis, M. and Delamarche, E.
Lab Chip 12, 1040–1043, 2012.

[5] Capillary soft valves for microfluidics
Hitzbleck, M., Avrain, L., Smekens, V., Lovchik, R. D., Mertens, P. and Delamarche, E.
Lab Chip 12, 1972–1978, 2012.

[6] Hydrodynamic levitation of a microfluidic probe for sample–head distance control
Lovchik, R.D., Kaigala, G.V. and Delamarche, E.
Proceedings µTAS 2012, Okinawa, 1444–1446.

[7] Bead traps in capillary-driven microfluidics for fluorescence immunoassays
Stucki, J., Hitzbleck, M. and Delamarche, E.
Proceedings µTAS 2012, Okinawa, 1927–1929.

[8] Tissue microprocessing
Kaigala, G.V., Lovchik, R.D. and Delamarche, E.
Proceedings µTAS 2012, Okinawa, 31–33.


2011

[1] High-grade optical poly(dimethylsiloxane) for microfluidic applications
Lovchik, R. D., Wolf, H. and Delamarche, E.
Biomed. Microdevices 13, 1027–1032, 2011.

[2] Controlled release of reagents in capillary-driven microfluidics using reagent integrators
Hitzbleck, M., Gervais, M. and Delamarche, E.
Lab Chip 11, 2680–2685, 2011.

[3] Capillary-driven multiparametric microfluidic chips for one-step immunoassays
Gervais, L., Hitzbleck, M. and Delamarche, E.
Biosens. Bioelectron. 27, 64–70, 2011.

[4] Microfluidic chips for point-of-care immunodiagnostics
Gervais, L., de Rooij, N. and Delamarche, E.
Adv. Mater. 23, 151–176, 2011.

[5] Precise placement of gold nanorods by capillary assembly
Kuemin, C., Stutz, R., Spencer, N.D. and Wolf, H.
Langmuir 27, 6305–6310, 2011.

[6] A vertical microfluidic probe
Kaigala, G. V., Lovchik, R. D. and Delamarche, E.
Langmuir 27, 5686–5693, 2011.

[7] Protein tethering into multiscale geometries by covalent subtractive printing
Coyer, S. R., Delamarche, E. and Garcia, A. J.
Adv. Mater. 23, 1550–1553, 2011.

[8] Microfluidic probe for advanced staining of human tissue sections
Lovchik, R. D., Kaigala, G. V., Georgiadis, M. and Delamarche, E.
Proceedings µTAS 2011, Seattle, 368–370.

[9] Reagent integrators for the controlled release of picograms of regeants in self-powered microfluidic chips
Hitzbleck, M., Gervais, L. and Delamarche, E.
Proceedings µTAS 2011, Seattle, 1885–1887.

[10] Investigating neuroprotective effects of primary glial cells using overflow microfluidic networks
Bianco, F., Tonna, N., Lovchik, R. D., Morini, R., Ruiz, A., Mastrangelo, R., Delamarche, E. and Matteoli, M.
Proceedings µTAS 2011, Seattle, 1505–1507.


2010

[1] Precision patterning with luminescent nanocrystal functionalized beads
Fanizza, E., Malaquin, L., Kraus, T., Wolf, H., Striccoli, M., Micali, N., Agostiano, A. and Curri, M.L.
Langmuir 26, 14294–14300, 2010.

[2] Selective assembly of sub-micrometer polymer particles
Kuemin, C., Huckstadt, K. C., Lörtscher, E., Rey, A., Decker, A., Spencer, N.D. and Wolf, H.
Adv. Mater. 22, 2804–2808, 2010.

[3] Direct write 3-dimensional nanopatterning using probes
Duerig, U., Pires, D., Knoll, A., Drechsler, U., Despont, M., Wolf, H., Hedrick, J. and DeSilva, E.
Alternative Lithographic Technologies II, edited by D.J.C. Herr, Proc. SPIE, Vol. 7637 (SPIE, April 2010) 76371E.

[4] Nanoscale three-dimensional patterning of molecular resists by scanning probes
Pires, D., Hedrick, J. L., De Silva, A., Frommer, J., Gotsmann, B., Wolf, H., Despont, M., Duerig, U., and Knoll, A.W.
Science 328(5979), 732–735, 2010.

[5] Templated self-assembly of particles
Kraus, T. and Wolf, H.
Springer Handbook of Nanotechnology, B. Bhushan (Ed), (Springer-Verlag, Berlin, Heidelberg, 2010) 3rd Ed., Part A Nanostructures, Micro-/Nanofabrication and Materials, Ch.6, pp. 187–210.

[6] Overflow microfluidic networks
Lovchik, R. D., Bianco, F., Tonna, N., Ruiz, A., Matteoli, M. and Delamarche, E.
Proceedings µTAS 2010, Groningen, 989–991.

[7] Extended dynamic range capillary-driven microfluidics
Gervais, L and Delamarche, E.
Proceedings µTAS 2010, Groningen, 809–811.

[8] Vertical microfluidic probe heads
Lovchik, R.D., U. Drechsler and Delamarche, E.
Proceedings µTAS 2010, Groningen, 1793–1795.

[9] Two complementary methods to characterize long range proximity effects due to develop loading
Sundberg, L. K., Wallraff, G. M., Fritz, A. M., Davis, B., Zweber, A. E., Lovchik, R. D., Delamarche, E., Senna, T., Komizo, T. and Hinsberg, W. D.
Proceedings SPIE 7823, 78230G, 2010.

[10] A method to characterize pattern density effects: Chemical flare and develop loading
Sundberg, L. K., Wallraff, G. M., Fritz, A. M., Zweber, A. E., Benes, Z., Lovchik, R. D., Delamarche, E. and Hinsberg, W. D.
in Advances in Resist Materials and Processing Technology XXVII, edited by R. D. Allen, Proceedings SPIE, vol. 7639, 76392S, 2010.

[11] Overflow microfluidic networks for open and closed cell cultures on chip
Lovchik, R. D., Bianco, F., Tonna, N., Ruiz, A., Matteoli, M. and Delamarche, E.
Anal. Chem. 82, 3936–3942, 2010.

[12] A microfluidic device for depositing and addressing two cell populations with intercellular population communication capability
Lovchik, R. D., Tonna, N., Bianco, F., Matteoli, M. and Delamarche, E.
Biomed. Microdev. 12, 275–282, 2010.

[13] Large-scale arrays of aligned single viruses
Solis, D. J., Coyer, S. R., Garcia, A. J. and Delamarche, E.
Adv. Mater. 22, 111–114, 2010.


2009

[1] One-step immunoassays on capillary-driven microfluidic chips
Gervais, L. and Delamarche, E.
Proceedings µTAS 2009, Jeju, 421–423.

[2] Multiparametric microfluidic chips for studying cellular pathways
Lovchik, R. D., Bianco, F., Matteoli, M. and Delamarche, E.
Proceedings µTAS 2009, Jeju, 591–593.

[3] Multilayered microfluidic probe heads
Lovchik, R. D., Drechsler, U. and Delamarche, E.
J. Micromech.Microeng. 12, 115006, 2009.

[4] Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates
Gervais, L. and Delamarche, E.
Lab Chip 9, 3313–3452, 2009.

[5] Controlled deposition of cells in sealed microfluidics using flow velocity boundaries
Lovchik, R. D., Bianco, F., Matteoli, M. and Delamarche, E.
Lab Chip 9, 1395–1402, 2009.

[6] Autonomous capillary system for one-step immunoassays
Zimmermann, M., Hunziker, P. and Delamarche, E.
Biomed. Microdevices 11, 1–8, 2009.


2008

[1] Matrix effects on the surface plasmon resonance of dry supported gold nanocrystals
Kuemin, C., Kraus, T., Wolf, H., Spencer, N.D.
Optics Letters 33, 806–808, 2008.

[2] One-step immunoassay on capillary driven microfluidics
Gervais, L., Zimmermann, M., Hunziker, P. and Delamarche, E.
Proceedings µTAS 2008, San Diego, 1949–1951.

[3] Microfluidic selection of library elements
Solis, J. S., Lovchik, R. and Delamarche, E.
Proceedings µTAS 2008, San Diego, 224–226.

[4] High-performances immunoassays based on through-stencil patterned antibodies and capillary systems
Ziegler, J., Zimmermann, M., Hunziker, P. and Delamarche, E.
Anal. Chem. 80, 1763–1769, 2008.

[5] Valves for autonomous capillary systems
Zimmermann, M., Hunziker, P. and Delamarche, E.
Microfluid. Nanofluid. 5, 395–402, 2008.

[6] Cellular microarrays for capillary-driven microfluidics
Lovchik, R., von Arx, C., Viviani, A. and Delamarche, E.
Anal. Bioanal. Chem. 390, 801–808, 2008.


2007

[1] Controlled particle placement through convective and capillary assembly
Malaquin, L., Kraus, T., Schmid, H., Delamarche, E. and Wolf, H.
Langmuir 23, 11513–11521, 2007.

[2] Fully autonomous microfluidic capillary systems for fast and sensitive surface immunoassays
Ziegler, J., Zimmermann, M., Hunziker, P. and Delamarche, E.
Proceedings µTAS 2007, Paris, 101–103.

[3] Valves for autonomous microfluidic capillary systems
Zimmermann, M., Hunziker, P. and Delamarche, E.
Proceedings µTAS 2007, Paris, 1492–1494.

[4] High resolution multi-protein nanopatterns
Coyer, S.R., Garcia, A.J. and Delamarche, E.
European Cells & Materials 14, 56, 2007.

[5] Facile preparation of complex protein architectures with sub-100-nm resolution on surfaces
Coyer, S.R., Garcia, A.J. and Delamarche, E.
Angew. Chem. 46, 6837–6840, 2007.

[6] Microcontact processing for microtechnology and biology
Delamarche, E.
Chimia 61, 126–132, 2007.

[7] Nanoparticle printing with single-particle resolution
Kraus, T., Malaquin, L., Schmid, H., Riess, W., Spencer, N. D. and Wolf, H.
Nature Nanotechnology 2, 570–576, 2007.

[8] An in situ study of the adsorption behavior of functionalized particles on self-assembled monolayers via different chemical interactions
Ling, X. Y., Malaquin, L., Reinhoudt, D. N., Wolf, H., and Huskens, J.
Langmuir 23, 9990–9999, 2007.

[9] Screening of cell membrane proteins using a micromosaic immunoassay format
Wolf, M., Zimmermann, M., Hunziker, P. and Delamarche, E.
Biomed. Microdevices 9, 135–141, 2007.

[10] Capillary pumps for autonomous capillary systems
Zimmermann, M., Schmid, H., Hunziker, P. and Delamarche, E.
Lab Chip 7, 119–125, 2007.


2006

[1] High-speed microcontact printing
Helmuth, J. A., Schmid, H., Stutz, R., Stemmer, A., Wolf, H.
J. Am. Chem. Soc. 128, 9296–9297, 2006.

[2] Advanced flow control of liquids in microfabricated capillary pumps
Zimmermann, M., Hunziker, P. and Delamarche, E.
Proceedings of the µTAS 2006, Tokyo, Japan, 612–614.


2005

[1] Printing chemical gradients
Kraus, T., Stutz, R., Balmer, T.E., Schmid, H., Malaquin, L., Spencer, N.D., Wolf, H.
Langmuir 21, 7796–7804, 2005.

[2] Closing the gap between self-assembly and microsystems using self-assembly, transfer, and integration (SATI) of nanoparticles
Kraus, T., Malaquin, L., Delamarche, E., Schmid, H., Spencer, N. D. and Wolf, H.
Adv. Mater. 17, 2438–2442, 2005.

[3] Diffusion of alkanethiols in PDMS and its implications on microcontact printing
Balmer, T., Schmid, H., Stutz, R., Delamarche, E., Michel, B., Spencer, N. and Wolf, H.
Langmuir 21, 622–632, 2005.

[4] Continuous flow in microfluidics using controlled evaporation
Zimmermann, M., Bentley, S., Schmid, H., Hunziker, P. and Delamarche, E.
Lab Chip 5, 1355–1359, 2005.

[5] Microcontact printing of proteins inside microstructures
Foley, J., Schmid, H., Stutz, R. and Delamarche, E.
Langmuir 21, 11296–11303, 2005.

[6] Assembly and printing of micro and nano objects
Kraus, T., Malaquin, L., Delamarche, E., Schmid, H., Spencer, N. D. and Wolf, H.
Proceedings of the µTAS 2005, Boston, MA, 539–541.

[7] Locally controlling the environment of a microfluidic chip and programming its flow rates
Zimmermann, M., Bentley, S., Juncker, D., Schmid, H., Hunziker, P. and Delamarche, E.
Proceedings of the µTAS 2005, Boston, MA, 578–580.

[8] Capillary effects used for liquid confinement and automatic flow control in microfluidic probes
Juncker, D., Schmid, H. and Delamarche, E.
Proceedings of the µTAS 2005, Boston, MA, 596–598.

[9] Microfluidic probe with hydrodynamic flow confinement
Juncker, D., Schmid, H. and Delamarche, E.
Proceedings of the µTAS 2005, Boston, MA, 1048–1050.

[10] Engineering microfluidic chips with integrated binding sites for ultraminiaturized immunoassays
Foley, J., Schmid, H., Stutz, R. and Delamarche, E.
Proceedings of the µTAS 2005, Boston, MA, 250–252.

[11] Microfluidics for processing surfaces and miniaturizing biological assays
Delamarche, E., Juncker, D. and Schmid, H.
Adv. Mater., invited review, 17, 2911–2933, 2005.

[12] Multipurpose scanning microfluidic probe
Juncker, D., Schmid, H. and Delamarche, E.
Nature Materials 4, 622–628, 2005.

[13] Modeling and optimization of high-sensitivity, low-volume microfluidic-based surface immunoassays
Zimmermann, M., Delamarche, E., Wolf, M. and Hunziker, P.
Biomed. Microdev. 7, 99–110, 2005.


2004

[1] High-sensitivity miniaturized immunoassays for tumor necrosis factor a using microfluidic systems
Cesaro-Tadic, S., Dernick, G., Juncker, D., Buurman, G., Kropshofer, H., Michel, B., Fattinger, C., Delamarche, E.
Lab Chip 4, 563–569, 2004.

[2] Microcontact printing of proteins
Delamarche, E.
In Nanobiotechnology, C. Mirkin and N. Niemeyer (Eds) Wiley-VCH GmbH, 2004.

[3] Simultaneous detection of C-reactive protein and other cardiac markers in human plasma using micromosaic immunoassays and self-regulating microfluidic networks
Wolf, M., Juncker, D., Michel, B., Hunziker, P., Delamarche, E.
Biosens. Bioelectron. B 19, 1193–1202, 2004.


2003

[1] Self-assembled microarrays of attoliter molecular vessels
Stamou, D., Duschl, C., Delamarche, E. and Vogel, H.
Angew. Chem. Int. Ed. 42, 5580–5583, 2003.

[2] Fabricating arrays of single proteins on glass using microcontact printing
Renault, J. P., Bernard, A., Bietsch, A., Michel, B., Bosshard, H. R., Kreiter, M., Hecht, B., Wild, U. and Delamarche, E.
J. Phys. Chem. B 107, 703–711, 2003.

[3] Selective wet-etching of microcontact-printed Cu substrates with control over the etch profile
Geissler, M., Schmid, H., Michel, B., and Delamarche, E.
Microelec. Microeng. 67–68, 326–332, 2003.

[4] Microcontact printing using poly(dimethylsiloxane) stamps hydrophilized using poly(ethylene oxide)-silanes
Delamarche, E., Donzel, C., Kamounah, F. S., Wolf, H., Geissler, M., Stutz, R., Schmidt-Winkel, P., Michel, B., Mathieu, H. J. and Schaumburg, K.
Langmuir 19, 8749–8758, 2003.

[5] Fabrication of metal nanowires using microcontact printing
Geissler, M., Wolf, H., Stutz, R., Delamarche, E., Grummt, U.-W., Michel, B. and Bietsch, A.
Langmuir 19, 6301–6311, 2003.

[6] Direct patterning of NiB on glass substrates using microcontact printing and electroless deposition
Geissler, M., Kind, H., Schmidt-Winkel, P., Michel, B. and Delamarche, E.
Langmuir 19, 6283–6296, 2003.

[7] Electroless deposition of Cu on glass and patterning with microcontact printing
Delamarche, E., Vichiconti, J., Hall, S., Geissler, M., Graham, W., Michel, B. and Nunes, R.
Langmuir 19, 6567–6569, 2003.

[8] Patterning NiB electroless deposited on glass using an electroplated Cu mask, microcontact printing, and wet etching
Delamarche, E., Geissler, M., Magnuson, R., Schmid, H. and Michel, B.
Langmuir 19, 5892–5897, 2003.

[9] Electroless deposition of NiB on 15 inch glass substrates for the fabrication of transistor gates for liquid crystal displays
Delamarche, E., Geissler, M., Vichiconti, J., Graham, W. S., Andry, P. A., Flake, J. C., Fryer, P. M., Nunes, R. W., Michel, B., O’Sullivan, E. J., Schmid, H., Wolf, H. and Wisnieff, R. L.
Langmuir 19, 5923–5935, 2003.

[10] Preparation of metallic films on elastomeric stamps and their application for contact processing and contact printing
Schmid, H., Wolf, H., Allenspach, R., Riehl, H., Karg, S., Michel, B. and Delamarche, E.
Adv. Func. Mater. 13, 145–153, 2003.


2002

[1] Autonomous microfluidic capillary system
Juncker, D., Schmid, J., Drechsler, U., Wolf, H., Wolf, M., Michel, B., de Rooij, N. and Delamarche, E.
Anal. Chem. 74, 6139–6144, 2002.

[2] Fabricating microarrays of functional proteins using affinity contact printing
Renault, J. P., Bernard, A., Juncker, D., Michel, B., Bosshard, H. R. and Delamarche, E.
Angew. Chem. Int. Ed. 41, 2320–2323, 2002.

[3] Microfluidic capillary systems for the autonomous transport of bio/chemicals
Juncker, D., Schmid, H., Drechsler, U., Wolf, H., Michel, B., de Rooij, N. and Delamarche, E.
In Micro Total Analysis Systems, Y. Baba, S. Shoji and A. van den Berg (Eds.) Springer, 952–954, 2002.

[4] Positive microcontact printing
Delamarche, E., Geissler, M., Wolf, H. and Michel, B.
J. Am. Chem. Soc. 124, 3834–3835, 2002.

[5] Defect-tolerant and directional wet etch systems for using monolayers as resists
Geissler, M., Schmid, H., Bietsch, A., Michel, B. and Delamarche, E.
Langmuir 18, 2374–2377, 2002.

[6] Self-assembled monolayers of alkanethiols on palladium and their use in microcontact printing
Carvalho, A., Geissler, M., Schmid, H., Michel, B. and Delamarche, E.
Langmuir 18, 2406–2412, 2002.


2001

[1] Printing meets lithography: Soft approaches to high-resolution patterning
Michel, B., Bernard, A., Bietsch, A., Delamarche, E., Geissler, M., Juncker, D., Kind, H., Renault, J. P., Rothuizen, H., Schmid, H., Schmidt-Winkel, P., Stutz, R. and Wolf, H.
IBM J. Res. Develop. 45, 697–719, 2001.

[2] Affinity-contact printing of functional cell adhesion molecules for neuronal cell patterning
Bernard, A., Fitzli, D., Sonderegger, P., Delamarche, E., Michel, B., Bosshard, H. R. and Biebuyck, H. A.
Nature Biotechnology 19, 866–869, 2001.

[3] Soft and rigid 2-level microfluidic networks for patterning surfaces
Juncker, D., Schmid, H., Bernard, A., Caelen, I., Michel, B., de Rooij, N. and Delamarche, E.
J. Micromech. Microeng. 11, 532–541, 2001.

[4] Microfluidic networks for patterning biomolecules and performing bioassays
Juncker, D., Bernard, A., Caelen, I., Schmid, H., Papra, A., Michel, B., de Rooij, N. and Delamarche, E.
Proceedings of the µTAS 2001, 429–431.

[5] Microfluidic networks of polydimethylsiloxane, Si and Au coated with polyethylene glycol for patterning proteins onto surfaces
Papra, A., Bernard, A., Juncker, D., Larsen, N. B., Michel, B. and Delamarche, E.
Langmuir 17, 4090–4095, 2001.

[6] Micromosaic immunoassays
Bernard, A., Michel, B. and Delamarche, E.,
Anal. Chem. 73, 8–12, 2001.

[7] Hydrophilic poly(dimethylsloxane) stamps for microcontact printing
Donzel, C., Geissler, M., Bernard, A., Wolf, H., Michel, B., Hilborn, J. and Delamarche, E.
Adv. Mater. 13, 1164–1167, 2001.

[8] Contrast mechanisms in high-resolution contact lithography: A comparative study
Paulus, M., Schmid, H., Michel, B., Martin, O. J. F.
Microel. Eng. 57–58, 109–116, 2001.


2000

[1] Formation of gradients of proteins on surfaces with microfluidic networks
Caelen, I., Bernard, A., Juncker, D., Michel, B., Heinzelmann, H. and Delamarche, E.
Langmuir 16, 9125–9130, 2000.

[2] Microcontact printing of proteins
Bernard, A., Renault, J. P., Michel, B., Bosshard, H. R. and Delamarche, E.
Adv. Mater. 12, 1067–1070, 2000.

[3] Microcontact printing chemical patterns with flat stamps
Geissler, M., Bernard, A, Bietsch, A., Schmid, H., Michel, B. and Delamarche, E.
J. Am. Chem. Soc. 122, 6303–6304, 2000.

[4] Stress at the solid-liquid interface of self-assembled monolayers on gold by a nanomechanical sensor
Fritz, J., Baller, M. K., Lang, H. P., Meyer, E., Güntherodt, H.-J., Delamarche, E., Gerber, Ch. and Gimzewski, J. K.
Langmuir 16, 9694–9696, 2000.

[5] Patterned electroless deposition of copper by microcontact printing palladium(II) complexes on titanium-covered surfaces
Kind, H., Geissler, M., Schmid, H., Michel, B., Kern, K. and Delamarche, E.
Langmuir 16, 6367–6373, 2000.

[6] Conformal contact and pattern stability of stamps used for soft lithography
Bietsch, A. and Michel, B.
J. Appl. Phys. 88, 4310–4318, 2000.

[7] Siloxane Polymers for High-Resolution, High-Accuracy Soft Lithography
Schmid, H. and Michel, B.
Macromolecules 33, 3042–3049, 2000.


1999

[1] Kelvin probe force microscopy on surfaces: Investigation of the surface potential of self-assembled monolayers on gold
Lü, J., Delamarche, E., Eng, L., Bennewitz, R., Meyer, E., and Güntherodt, H.-J.
Langmuir 15, 8184–8188, 1999.

[2] Surface potential studies of self-assembling monolayers using Kelvin probe force microscopy
Lü, J., Eng, L., Bennewitz, R., Meyer, E., Güntherodt, H.-J., Delamarche, E. and Scandella, L.
Surf. Interface Anal. 27(5-6), 368–373, 1999.

[3] Contact inking PDMS stamps for microcontact printing alkanethiols on gold
Libioulle, L., Bietsch, A., Schmid, H., Michel, B. and Delamarche, E.
Langmuir 15, 300–304, 1999.


1998

[1] Printing patterns of proteins
Bernard, A., Delamarche, E., Schmid, H., Michel, B., Bosshard, H. R. and Biebuyck, H. A.
Langmuir 14, 2225–2229, 1998.

[2] Microfluidic networks for chemical patterning of substrates: Design and applications to bioassays
Delamarche, E., Bernard, A., Schmid, H., Bietsch, A., Michel, B. and Biebuyck, H. A.
J. Am. Chem. Soc. 120, 500–508, 1998.

[3] Transport mechanisms of alkanethiols during microcontact printing on gold
Delamarche, E., Schmid, H., Bietsch, A., Larsen, N. B., Rothuizen, H., Michel, B. and Biebuyck, H. A.
J. Phys. Chem. B 102, 3324–3334, 1998.

[4] Surface stress in the self-assembly of alkanethiols on gold probed by a force microscopy technique
Berger, R., Delamarche, E., Lang, H. P., Gerber, Ch., Gimzewski, J. K., Meyer, E. and Güntherodt, H.-J.
Appl. Phys. A 66, S55–S59, 1998.

[5] Light-coupling masks for lensless, sub-wavelength optical lithography
Schmid, H., Biebuck, H., Michel, B., Martin, O. J. F.
Appl. Phys. Lett. 72, 2379–2381, 1998.


1997

[1] Patterned delivery of immunoglobulins to surfaces using microfluidic networks
Delamarche, E., Bernard, A., Schmid, H., Michel, B., Biebuyck, H.
Science 276, 779–781, 1997.

[2] Integration of silicon micromechanical arrays with molecular monolayers for miniaturized sensor systems
Berger, R., Lang, H.P., Delamarche, E., Gerber, Ch., Gimzewski, J.K., Andreoli, C., Brugger, J., Despont, M., and Vettiger, P.
Sensors and their Applications VIII, Institute of Physics Publishing, 71–76, 1997.

[3] Making gold nanostructures using positive lithography with electron brams and self-assembled monolayers
Delamarche, E., Hoole, A. C. F., Michel, B., Wilkes, S., Despont, M., Welland, M. E. and Biebuyck, H. A.
J. Phys. Chem. 101, 9263–9269, 1997.

[4] Stability of molded microstructures in polydimethylsiloxane
Delamarche, E., Biebuyck, H. A., Schmid, H. and Michel, B.
Adv. Mater. 9, 741–746, 1997.

[5] Surface stress in the self-assembly of alkanethiols on gold
Berger, R., Delamarche, E., Lang, H. P., Gerber, Ch., Gimzewski, J. K., Meyer, E. and Güntherodt, H.-J.
Science 276, 2021–2024, 1997.

[6] Lithography beyond light: Microcontact printing with monolayer resists
Biebuyck, H. A., Larsen, N. B., Delamarche, E. and Michel, B.
IBM J. Res. Develop. 41, 159–170, 1997.

[7] Order in microcontact printed self-assembled monolayers
Larsen, N. B., Biebuyck, H. A., Delamarche, E. and Michel, B.
J. Am. Chem. Soc. 119, 3017–3026, 1997.


1996

[1] Immobilization of antibodies on a photoactive self-assembled monolayer on gold
Delamarche, E., Sundarababu, G., Biebuyck, H., Michel, B., Gerber, Ch., Sigrist, H., Wolf, H., Ringsdorf, H., Xanthopoulos, N., Mathieu, H.J.
Langmuir 12, 1997–2006, 1996.

[2] Golden interfaces: The surface of self-assembled monolayers
Delamarche, E., Michel, B., Biebuyck, H. A. and Gerber, Ch.
Adv. Mater. 8, 719–729, 1996.

[3] Structure and stability of self-assembled monolayers
Delamarche, E. and Michel, B.
Thin Solid Films 273, 54–60, 1996.


1995

[1] Recognition of individual tail groups in self-assembled monolayers
Takami, T., Delamarche, E., Michel, B., Gerber, Ch., Wolf, H. and Ringsdorf, H.
Langmuir 11, 3876–3881, 1995.

[2] End-group dominated molecular order in self-assembled monolayers
Wolf, H., Ringsdorf, H., Delamarche, E., Takami, T., Kang, H., Michel, B., Gerber, Ch., Jaschke, M., Butt, H.-J. and Bamberg, E.
J. Phys. Chem. 99, 7102–7107, 1995.

[3] STM analysis of cytochrome c immobilized on SAMs on gold
Delamarche, E., Biebuyck, H. A., Michel, B., Sundarababu, G., Sigrist, H., Wolf, H. and Ringsdorf, H.
Procedures in Scanning Probe Microscopies, Colton et al. (eds), Wiley, 7.3.4.1–7.3.4.5, 1995.


1994

[1] Thermal stability of self-assembled monolayers
Delamarche, E., Michel, B., Kang, H. and Gerber, Ch.
Langmuir 10, 4103–4108, 1994.

[2] The structure of hydrophilic self-assembled monolayers: A combined scanning tunneling microscopy and computer simulation study
Sprik, M., Delamarche, E., Michel, B., Röthlisberger, U., Klein, M. L., Wolf, H. and Ringsdorf, H.
Langmuir 10, 4116–4130, 1994.

[3] Real-space observation of nanoscale molecular domains in self-assembled monolayers
Delamarche, E., Michel, B., Gerber, Ch., Anselmetti, D., Güntherodt, H.-J., Wolf, H. and Ringsdorf, H.
Langmuir 10, 2869–2871, 1994.

[4] Domain and Molecular Superlattice Structure of Dodecanethiol Self-Assembled on Au(111)
Anselmetti, D., Baratoff, A., Güntherodt, H.-J., Delamarche, E., Michel, B., Gerber, Ch., Kang, H., Wolf, H. and Ringsdorf, H.
Europhys. Lett. 27, 365–370, 1994.