Jehanzeb Mirza, Leonid Karlinsky, et al.
NeurIPS 2023
We propose a node saliency measure and a back-propagation type of algorithm to compute the node saliencies. A node-pruning procedure is then presented to remove insalient nodes in the network to create a parsimonious network. The optimal/suboptimal subset of features are simultaneously selected by the network. The performance of the proposed approach for feature selection is compared with Whitney's feature selection method. One advantage of the node-pruning procedure over classical feature selection methods is that the node-pruning procedure can simultaneously "optimize" both the feature set and the classifier, while classical feature selection methods select the "best" subset of features with respect to a fixed classifier.
Jehanzeb Mirza, Leonid Karlinsky, et al.
NeurIPS 2023
Hagen Soltau, Lidia Mangu, et al.
ASRU 2011
Diganta Misra, Muawiz Chaudhary, et al.
CVPRW 2024
Hans-Werner Fink, Heinz Schmid, et al.
Journal of the Optical Society of America A: Optics and Image Science, and Vision