Mario Blaum, John L. Fan, et al.
IEEE International Symposium on Information Theory - Proceedings
A theorem of Korovkin states that a sequence of positive linear operators on C[a, 6] converges strongly to the identity if and only if convergence holds on a three-dimensional Chebyshev subspace of C[a, b]. We extend this theorem to include Chebyshev subspaces of arbitrary dimension and convergence to other positive linear operators. © 1973, American Mathematical Society.
Mario Blaum, John L. Fan, et al.
IEEE International Symposium on Information Theory - Proceedings
Sonia Cafieri, Jon Lee, et al.
Journal of Global Optimization
Vladimir Yanovski, Israel A. Wagner, et al.
Ann. Math. Artif. Intell.
Hang-Yip Liu, Steffen Schulze, et al.
Proceedings of SPIE - The International Society for Optical Engineering