Pavel Klavík, A. Cristiano I. Malossi, et al.
Philos. Trans. R. Soc. A
This paper describes a general approach for automatically programming a behavior-based robot. New behaviors are learned by trial and error using a performance feedback function as reinforcement. Two algorithms for behavior learning are described that combine techniques for propagating reinforcement values temporally across actions and spatially across states. A behavior-based robot called OBELIX (see Figure 1) is described that learns several component behaviors in an example task involving pushing boxes. An experimental study using the robot suggests two conclusions. One, the learning techniques are able to learn the individual behaviors, sometimes outperforming a hand-coded program. Two, using a behavior-based architecture is better than using a monolithic architecture for learning the box pushing task.
Pavel Klavík, A. Cristiano I. Malossi, et al.
Philos. Trans. R. Soc. A
Erik Altman, Jovan Blanusa, et al.
NeurIPS 2023
Conrad Albrecht, Jannik Schneider, et al.
CVPR 2025
Miao Guo, Yong Tao Pei, et al.
WCITS 2011