Thomas M. Cheng
IT Professional
A correspondence between linear (n,k,d) codes and algorithms for computing a system Ψ of k bilinear forms is established under which the codelength n is equal to the multiplicative complexity of the algorithm for computing Ψ, and the code distance d is underbounded by the minimum number of multiplications required to compute any linear combination of the k forms in Ψ. This hitherto unexplored approach to linear codes holds promise of a better understanding of the structure of existing codes as well as for methods of constructing new codes with prescribed rate and distance. © 1977, IEEE. All rights reserved.
Thomas M. Cheng
IT Professional
M.F. Cowlishaw
IBM Systems Journal
Rolf Clauberg
IBM J. Res. Dev
A. Gupta, R. Gross, et al.
SPIE Advances in Semiconductors and Superconductors 1990