Mandatory iSCSI Security

review of the potential methods

IPS Interim Meeting
Nashua NH, May 01 2001

Ofer Biran

Thanks to:
Bernard Aboba, David Black,
Julian Satran, Steve Senum
Current draft Security MUST / MAY for Implementation:

- MUST provide means of authentication and data integrity.
- MAY provide means of data privacy.
- Both can be satisfied by using IPSec. IPSec – ‘orthogonal’ to the iSCSI standard.
- Negotiated: Kerb5, SPKM-1,2, SRP, CHAP [TLS, proprietary]
Security Open Issues

- Mandatory to implement method ensures Implementation Interoperability

- Still might be ‘configured out’...

- e.g., in TLS, mandatory algorithm is `TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA`
 in CHAP: `MD5`
Selection Criteria

1. Suitability for the iSCSI scenarios
2. Administration
3. Standardization, existing code & implementations
4. Code complexity
5. Performance / hardware acceleration
6. Security considerations
7. Licensing
1. Suitability for the iSCSI scenarios

- Security ‘roles’:
 - Initiator
 - Target
 - iSCSI Proxy
 - iSCSI Gateway
 - iSCSI-aware firewall

- Initiators are 'users' on target systems?
- The identity to be authenticated.
1. ...Suitability for the iSCSI scenarios

- Corporate intranet aspects, firewalls.
- Central security server appropriate?
- iSNS requirements / interoperability.
2. Administration

- Getting into operational state.
- Adding / removing users and service principals.
- Maintenance (passwords, certificates, security servers & databases).
- Policy.
- Authorization aspects.
2. ... Administration

- The potential methods divided to:
 - ‘User accounts on target machine’
 (SRP, CHAP)
 - Security server
 (KERB5, CHAP/Radius, SPKM/iSNS)
 - PKI
 (IPSec, SPKM, TLS)
3. Standardization, existing code & implementations

- Status of formal standard
- Existing code:
 - Open source
 - Commercial libraries (GSS_API)
- Experience and acceptance
- ‘Customer base’
4. Code complexity

- Code size
- Programming effort
- Testing effort
 - Security server – more complex.
 - More options – more complex...
5. Performance / Hardware accelerators

- Initial Authentication – no issue
- Message authentication/integrity
- Encryption
 - not mandatory
 - Agreed – only by IPSec (or proprietary)
6. Security considerations

- Protected attacks
- Known crypto algorithm deficiencies
- Other security problems
Kerberos V5

- Central KDC (AS + TGS) stores all users & services keys.
- User get credentials (TGT) from the AS, then get a ticket for each desired service.
- Service has a private key in protected file.
- Timestamps play important role.
- iSCSI login defines tokens exchange and digests based on GSS-API.
Kerberos V5

1. Suitability for the iSCSI scenarios + -
 ◆ Excellent for Intranet scenario
 ◆ Less suitable for Internet / crossing into Internet.
 ◆ Third party (KDC) dependency.

2. Administration +
 ◆ Some effort in initial configuration
 ◆ Excellent for add/delete users, maintenance, Policy, Authorization aspects.
3. Standardization, exist. Implementations +
 - Excellent experience & acceptance.
 - Large customer base.

4. Code complexity +-
 - Very complex, however free & commercial GSS-API libraries exist.

5. Performance / hardware acceleration -
 - For digest: MD5 / DES based.
6. Security considerations

- Crypto digest available (GSS_GetMic) (MD5 / DES issues)
- Encryption also available (GSS_Wrap) but not defined in the iSCSI draft.
- Credentials reuse & delegation.
- TGS protocol – dictionary attack (proposal to use SRP...).
SPKM-1/2 Simple Public Key Mechanism

- Based on RFC-2025 “The Simple Public-Key GSS-API Mechanism (SPKM)”
- SPKM-1 (random challenge), SPKM-2 (timestamp)
- iSCSI login defines token exchange:

 SPKM-REQ gss_init_sec_context()
 SPKM-REP-TI gss_accept_sec_context()
 SPKM-REP-IT gss_init_sec_context()

- Digest by GSS_GetMIC() similar to KRB5 (here: md5WithRSA, DES-MAC, md5-DES-CBC)
1. Suitability for the iSCSI scenarios +
 - With CA hierarchy suitable both for Intranet and Internet.
 - Proxy / real target can both play security endpoint.

2. Administration +-
 - PKI... Intranet CA + distribution of certificates. CRLs are complex.
 - Certificates can be used for authorization aspects (property fields).
3. Standardization, exist. Implementations -
 - RFC-2025 in ‘proposed standard (since 1996)
 - NFS V4 mandates SPKM-3 which is based on SPKM (RFC-2025).
 - Very few implementations / experience.

4. Code complexity +-
 - Not complex, but lack of experience & commercial libraries.
5. Performance / hardware acceleration -
 - For digest: MD5 / DES based.

6. Security considerations +
 - Crypto digest available (GSS_GetMic) (MD5 issues)
 - Encryption also available (GSS_Wrap) but not defined in the iSCSI draft.
 - CRLs are problematic.
SRP

- Strong Password Authentication
- Protection against both passive and active attacks.
- Server keeps password verifiers.
- Mutual authentication (the server proves the knowledge of the verifier).
- Shared key (320 bit) is constructed – no usage spec.
1. Suitability for the iSCSI scenarios
 - User/password based...
 - Machine key or user’s password (?)
 - Suitable for SSPs.

2. Administration +
 - User/password DB for each target, or central security DB (with safe target connection).
3. **Standardization, existing implementations** +
 - RFC-2945 in ‘proposed standard’.
 - Telnet, FTP, SSH extensions.

4. **Code complexity** +
 - Very simple.

5. **Performance / hardware acceleration** -
 - Only initial authentication (currently)

6. **Security considerations** +
 - Strong Password authentication. Mutual. no clear passwords saved, shared key (320 bits) is generated, can be used for MIC – no standard for this.
CHAP ([Radius])

- Simple challenge / response scheme.
- Used for PPP authentication (defined for the PPP link layer – iSCSI defines corresponding login exchanges).
- Radius server is used on the server side – but this is optional.
- iSCSI login defines server authentication by reverse challenge / response.
1. Suitability for the iSCSI scenarios
 - User/password based...
 - Machine key or user’s password (?)
 - Suitable for SSPs.
 - Target needs ‘password for user’ for mutual authentication.
 - Third party (Radius server) dependency.

2. Administration +
 - User/password DB for each target, or Radius security server (with safe target connection).
3. Standardization, exist. Implementations +
 - RFC-2945 in ‘proposed standard’.
 - Well accepted, large customer base.

4. Code complexity +
 - Very simple.

5. Performance / hardware acceleration
 - Only initial authentication.
6. Security considerations -

- Clear password saved (on Radius server).
- Guessing attack on the response unveil the password!
- Target’s passwords for mutual authentication.
- No shared key generated.
TLS

- Based on the popular SSL (99% of internet secure traffic)
- Public key & certificate scheme.
- Handshake phase – authentication, session key generated and integrity / encryption algorithms negotiated.
- Has its own framing (record layer) – doesn’t preserve message boundaries.
- Otherwise convenient API control.
TLS

1. **Suitability for the iSCSI scenarios**
 - With CA hierarchy suitable both for Intranet and Internet.
 - Proxy / real target can both play security endpoint.

2. **Administration**
 - PKI... Intranet CA + distribution of certificates. CRLs are complex.
 - Certificates can be used for authorization aspects (property fields).
3. Standardization, exis implementations +
 - THE Internet de-facto security.

4. Code complexity +-
 - Complex, but many commercial libraries.
5. Performance / hardware acceleration -
 - Hardware accelerators exist, not 1Gbs
 - Record layer fragmentation breaks iSCSI steering and synchronization.

6. Security considerations +
 - CRLs are problematic.
IPSec

- Security at the IP level.
- Transport mode for host to host.
- Tunnel mode between routers (VPNs).
- AH – IP header authentication.
- ECP – encryption of the payload (& auth)
- SA generated by IKE (or KINK...)
 - Manual keying or certificate based.
 - Main mode for authentication, keying material and protection of quick modes.
 - Quick modes for generating specific SAs.
- Complex policy rules for handling packets.
- Cannot be negotiated in iSCSI level.
IPSec

1. Suitability for the iSCSI scenarios + -
 - Security on the (ext-)Initiator – firewall segment.
 - Suitable for ‘iSCSI aware firewall’.
 - The only acceptable solution for encryption.
 - Fragmentation of IKE cert payloads (filters).

2. Administration -
 - PKI... Intranet CA + distribution of certificates.
 - Or – manual keys setting – not scalable.
 - CRLs are complex.
 - Complex policy.
3. Standardization, exist. Implementations +
 - IPSec, IH, ECP, ISAKMP, DOI, IKE
 - Well accepted, growing usage.

4. Code complexity +-
 - Very complex, IP Stack.
5. **Performance / hardware acceleration**
 - Available hardware with excellent encryption/integrity performance.

6. **Security considerations**
 - Issue of binding the identity authenticated during IKE SA with iSCSI.
 - Awareness of iSCSI implementation of the underlying IPSec protection. Would iSCSI / IPSec be orthogonal (only the administrator knows).
 - Credential reuse. (+)
 - CRLs are problematic.
<table>
<thead>
<tr>
<th></th>
<th>iSCSI Scena.</th>
<th>Admin</th>
<th>Std. & Impl.</th>
<th>Code Comp.</th>
<th>Perf. HW</th>
<th>Secur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerb5</td>
<td>+ -</td>
<td>+</td>
<td>+</td>
<td>+ -</td>
<td>-</td>
<td>+ -</td>
</tr>
<tr>
<td>SPKM</td>
<td>+</td>
<td>+ -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>SRP</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>CHAP</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TLS</td>
<td>+</td>
<td>+ -</td>
<td>+</td>
<td>+ -</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>IPSec</td>
<td>+ -</td>
<td>-</td>
<td>+</td>
<td>+ -</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Recommendation

1. MUST implement E-E Authentication
 - Kerberos - Third party, non-intranet
 - SPKM - standard, code complexity
 - CHAP – Security, mutual auth.
 - TLS – record layer
 - SRP with defined digests

2. MUST (?SHOULD) implement IPSec
 ?unless… system where IPSec must be provided by other component.
... **MUST IPsec**

- Retrieving IKE identities / certs should be possible.

- Require IPsec/IKE administrative interface?

- Restricting IPsec (Tunnel / ESP)?

- Defining the IKE / SA rules in the iSCSI standard? (iSCSI login in lower level – or iSCSI ‘login’ standard on 2 levels)