Using Constraint Satisfaction Formulation and Solution Techniques for Random Test Program Generation

Roy Emek

12-Sep-2002

IBM Research Lab in Haifa

Outline

- Random test program generation
- Constraint Satisfaction Problems (CSP)
- Modeling test programs as CSP
- CSP for random test generation: characteristics
- Solution building blocks

[Based on a paper by E. Bin, R. Emek, G. Shurek and A. Ziv]
Verification Through Simulation

Test program:
- Instructions
- Resource initializations

Architecture Simulator

Expected behavior

Design Simulator

Actual behavior

Random Test Program Generator

System model:
- What's valid
- What's interesting

User requirements

Generate N tests

Random Test Generator

N distinct tests
- Valid, Interesting
- Satisfy user requirements
Test Program Constraints

Test quality: sum overflow

Validity: $x \neq y$

User request: same register

CSP Definition

[Mackworth, Freuder, Montanari, Dechter, Rossi, ...]

- **Variables of the problem**
 - address, register_value

- **Domain (set) for each variable**
 - address: 0x0000 - 0xFFFF
 - number of bytes in a 'load': { 1, 2, 4, 8, 16 }

- **Constraints (relations) over variables**
 - (load n bytes) \Rightarrow (align address to n bytes boundary)
 - value(base_reg) + displacement = address
CSP Definition (cont)

- **Solution for a CSP**
 - Every variable is assigned a value from its domain
 - The assignments satisfy all the constraints

- **Example**
 - Variables: a, b, c
 - Domains:
 - A = {1,2,3} ; B = {2,3,4,5} ; C = {1,3,5}
 - Constraints:
 - $a^2 < b$; $c \neq b$; $a < c - 1$
 - Solution:
 - $a = 1$; $b = 4$; $c = 3$

Random Test Program Generator (2)

System model:
- What's valid
- What's interesting

User Requirements

Generate N tests

A Constraint Satisfaction Problem

Random Test Generator (CSP solver)

N distinct tests (solutions)
- Valid, Interesting
- Satisfy user requirements
CSP@RTG Characteristics

- **Random, uniform distribution solution**
 [Yuan et al. '99, Dechter et al. '02]
 - As opposed to one, all, or 'best' solution
- **Huge domains**: 2^{64} and more
 - Example: address space
 - Representing and operating on large sets becomes an issue
- **Hierarchy of constraints** [Borning et al., '87]
 - Mandatory: test case validity
 - Non-mandatory: makes the test 'interesting'

And we want it fast ...
Solution Algorithm:
Consistency - A Single Constraint

\[X \quad Y \quad Z \]
\[\{1, 2, 3\} \quad \{1, 2, 3\} \quad \{1, 2, 3\} \]

R: \((x,y,z) \in X \times Y \times Z, \ x = y + z\)

\[\{1, 2, 3\} \quad \{1, 2, 3\} \quad \{1, 2, 3\} \]

Solution Algorithm:
Maintaining Arc Consistency (MAC)

[Mackworth, 1977]

The process: reducing domains to single-values

1. Make all constraints locally consistent
 - Some constraints are handled repeatedly
 - Achieve fixed-point
2. Choose a variable: \(address\)
3. Choose a value: \(address \leftarrow 0x1234\)
 - \(0x1234 \in domain\ (address)\)
4. Go to step 1
5. On failure - backtrack
 - Failure results in an empty set / domain
Consistency as Projection

Formula Based Constraint Projector

- MAC scheme – projectors for constraints
- Developing arithmetic / logical / bit-wise projectors time after time again?
 - $a = b + c$, $a + b = c + d$, $a + b = c$ bit-xor d, ...
 - Error prone, labour intensive

Constraint (formula)
\[a = b + c \oplus a \]

Input sets:

Reduced output sets:

Projector
Example: Projecting Disjoint Constraints

Constraint: \((a=b) \lor (b=a+c) \lor (c=3\cdot a)\)
Domains: \(A=\{1,2,3\}; B=\{3,4,5\}; C=\{4,5\}\)

(1) Project sub-constraints separately
(2) Join* sub-constraints projections

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input domain</td>
<td>{1,2,3}</td>
<td>{3,4,5}</td>
<td>{4,5}</td>
</tr>
<tr>
<td>a=b</td>
<td>{3}</td>
<td>{3}</td>
<td>-</td>
</tr>
<tr>
<td>b=a+c</td>
<td>{1}</td>
<td>{5}</td>
<td>{4}</td>
</tr>
<tr>
<td>c=3a</td>
<td>(\phi)</td>
<td>-</td>
<td>(\phi)</td>
</tr>
<tr>
<td>Results</td>
<td>{1,3}</td>
<td>{3,5}</td>
<td>{4,5}</td>
</tr>
</tbody>
</table>

Domain (Set) Representation Example: bit-vectors

- **Origin of the challenge: large H/W resources**
 - 128-bit registers
 - 64-bit wide memory address space
- **All the addresses such that**
 - \(\text{addr} = \text{base} + \text{displacement} \) // architectural
 - \(\text{addr}[3:6] = 01?1\) // cache line
 - \(\text{addr} \in [0x2000 : 0x10FFF]\) // memory space
- **'Masks' (DNF) representation:**
 - \(01?1 \to 0101, 0111\)
Problem: Exponential Explosion

- $01010101 + 0?0?0?0? \rightarrow$
 - $\{10101010, 01101010, 10011010, 01011010, 10100110, 01100110, ..., 10010101\}$

- The general case: $a + b \rightarrow 2^{(n/2)}$ clauses

- Coping with the problem
 - Binary Decision Diagrams (BDDs)
 - Sometimes: space explosion
 - Approximations

We only have partial solutions

Summary

- Viewing test generation as CSP
- Characteristics: random, huge domains
- Solution scheme
 - Consistency based

- HRL's test generators are CSP based
 - The basis for test generators for all the processors designed in IBM
Using Constraint Satisfaction Formulation and Solution Techniques for Random Test Program Generation

End of Presentation

12-Sep-02

IBM Research Lab in Haifa

Floating Point Operations – Stochastic Approach

- \(a \cdot 2^a \text{ op } b \cdot 2^b = c \cdot 2^c\)
 - \(\text{op: +, -, \cdot, ...}\)
 - Limited number of bits: non-continuous domain, rounding

Constraints:
- ‘\(\text{op}\)' itself
- bit \(n = '0'\)
- Number of ‘1’s = \(m\)
- \(a \in [a_1 \ldots a_2]\)

Stochastic solution scheme:
- assign random \(64 \times 3\) bits
- Hill-climbing
 - Simple heuristics
 - Local maximum: flip random bits
 - After some time - give up and start all over again
Instruction Constraints
Modelling a PowerPC instruction

Load DS(RA) → RT

Instruction Constraints

Problem Partition, Dynamic Modeling

- Partitioning the problem
 - Easier to model, easier to solve
 - Hard to handle interdependencies

- Dynamic problem structure
CSP Definition

[Mackworth, Freuder, Montanari, Dechter, Rossi, ...]

- **Variables** of the problem
 - address, register_value

- **Domain** (set) for each variable
 - address: 0x0000 - 0xFFFF
 - number of bytes in a 'load': { 1, 2, 4, 8, 16 }

- **Constraints** (relations) over variables
 - (load n bytes) ⇒ (align address to n bytes boundary)
 - value(base_reg) + displacement = address
 - last_instruction = "branch" ?
 - yes: PC = branch-target
 - no : PC = increase (last_instruction_address)