K-Induction without Unrolling

Arie Gurfinkel
University of Waterloo
http://ece.uwaterloo.ca/~agurfink

Alexander Ivrii
IBM Research
alexi@il.ibm.com

Abstract—We present a flexible algorithmic framework KIC3 that combines IC3 and k-induction. The key underlying observation is that k-induction can be easily simulated by existing IC3 implementations by following a slightly different counterexample-queue management strategy.

I. INTRODUCTION

The principle of k-induction is the first successful technique for unbounded SAT-based model checking [1]. It is based on the following generalization of the usual one-step induction principle: a safety property φ is invariant (i.e., holds in all the reachable states of the system) if (a) φ holds in all states reachable in up to k steps, and (b) φ holds for k consecutive steps implies that it holds for $k + 1$-steps. Interestingly, k-induction is complete when restricted to loop-free (or simple) paths. That is, any invariant φ is k-inductive for some k, when only loop-free paths of length k are considered. This gives rise to an unbounded model checking algorithm that repeatedly tries to prove that φ is k-inductive for increasing values of k.

Today, k-induction [1] remains a very important technique for unbounded model checking in both hardware and software domains [2]. A classical implementation of k-induction uses a SAT-solver to check a k-step unrolling of a transition relation, and ensures loop-freedom of counterexamples via additional unique state constraints. However, the scalability of the technique is limited by the depth k of the required unrolling. While combining k-induction with additional invariant synthesis (e.g., [3]) is beneficial, applicability of k-induction remains limited to properties that can be established with a small value of k.

IC3/PDR [4, 5] is currently the dominant SAT-based unbounded model checking technique. Pioneered by Bradley [4], IC3 has become the definitive framework for developing SAT- and SMT-based model checking algorithms for both hardware and software verification. Given a safety property φ, IC3 computes an inductive strengthening F of φ. That is, a formula F such that $\varphi \rightarrow F$ and F is inductive. Furthermore, when φ is not an invariant, then IC3 produces a counterexample. One of the distinguishing features of IC3 is that it does not explicitly build an unrolling of the transition relation: all reasoning is done over a single step.

As was pointed out in [6], the strengths of k-induction and IC3 are complementary. Properties that are k-inductive for a small value of k (e.g., 3 or 4) and, therefore, are “easy” for k-induction, are not necessarily easy for IC3. More specifically, IC3 is not guaranteed to terminate after exploring all k-depth counterexamples even when a property is k-inductive. Based on this observation, Jovanovic and Dutertre [6] presented an alternative model checking approach using the insights from both algorithms. However, their approach requires a significant modification of IC3 and an unrolling-based check for k-induction. In this paper, we explore an alternative solution that is both and more elegantly integrates k-induction within IC3.

The paper makes two contributions. First, we introduce a new algorithm, called K-Ind, to decide whether a given safety property φ is k-inductive. The algorithm is based on the insights from IC3, and does not explicitly unroll the transition relation. Whenever φ is k-inductive, K-Ind returns an inductive strengthening of φ; otherwise, it returns a counterexample to k-induction. Perhaps the most interesting feature of K-Ind is that it does not rely on an expensive unique-states constraint to guarantee that only loop-free paths are considered. Furthermore, since it is embedded in the IC3 framework, it benefits from all the usual IC3 optimizations such as inductive generalization and generalization of predecessors.

Second, we introduce a framework, called KIC3, that combines IC3 and k-induction in a single IC3-like algorithm. Our key insight is that k-induction can be simulated by a specialized counterexample-queue management strategy. This enables KIC3 to immediately be compatible with all known IC3-optimizations and extensions (e.g., [5], [7–12]). The algorithm is parameterized by the degree of k-inductive reasoning, where k-induction can be used to simply validate k-inductive conjectures, construct k-inductive strengthening, or recursively block counterexamples to induction.

The rest of the paper is organized as follows. In Section II we review the necessary background about k-induction and IC3. In Section III we present the K-Ind algorithm, and in Section IV we present the KIC3 framework. Finally, we conclude the paper with an overview of related work in Section V and an experimental evaluation in Section VI and conclusion in Section VII.

II. BACKGROUND

A. Propositional Satisfiability

Let \mathcal{V} be a set of variables. A literal is either a variable $b \in \mathcal{V}$ or its negation $\neg b$. A clause is a disjunction of literals. A Boolean formula in Conjunctive Normal Form (CNF) is a conjunction of clauses. A cube is a conjunction of literals. A Boolean formula in Disjunctive Normal Form (DNF) is a disjunction of cubes. It is often convenient to treat a clause or a cube as a set of literals, a CNF as a set of clauses, and DNF as a set of cubes. For example, given a CNF formula F, a clause c and a literal ℓ, we write $\ell \in c$ to mean that ℓ occurs in c, and $c \subseteq F$ to mean that c occurs in F.
Let \mathcal{V} be a set of variables and $\mathcal{V}' = \{v' \mid v \in \mathcal{V}\}$. A safety verification problem is a tuple $P = (Init, Tr, Bad)$, where $Init(\mathcal{V})$ and $Bad(\mathcal{V})$ are formulas with free variables in \mathcal{V} denoting initial and bad states, respectively, and $Tr(\mathcal{V}, \mathcal{V}')$ is a formula with free variables in $\mathcal{V} \cup \mathcal{V}'$ denoting the transition relation. Without loss of generality, we assume that $Init$ and Tr are in CNF.

The verification problem P is SAT (or UNSAFE) iff there exists a natural number N such that the following formula is SAT:

$$Init(\vec{v}_0) \wedge \left(\bigwedge_{i=0}^{N-1} Tr(\vec{v}_i, \vec{v}_{i+1})\right) \wedge Bad(\vec{v}_N)$$ \hspace{1cm} (1)

P is UNSAT (or SAFE) iff there exists a formula $Inv(\mathcal{V})$, called a safe invariant, that satisfies the following conditions:

$$Init(\vec{v}) \rightarrow Inv(\vec{v}) \quad Inv(\vec{v}) \wedge Tr(\vec{v}, \vec{v}') \rightarrow Inv(\vec{v}') \quad (2)$$

$$Inv(\vec{v}) \rightarrow \neg Bad(\vec{v}) \quad (3)$$

A formula Inv that satisfies (2) is called an invariant, while a formula Inv that satisfies (3) is called safe.

B. k-invariants and k-induction

An invariant over-approximates all the reachable states of the transition relation; however, there is no efficient way to check that a formula is an invariant. An inductive invariant is an invariant that is easy to validate.

A formula φ is called a k-invariant if it over-approximates all states reachable up to k-steps. That is,

$$\forall 0 \leq N \leq k : \left(Init(\vec{v}_0) \wedge \bigwedge_{i=0}^{N-1} Tr(\vec{v}_i, \vec{v}_{i+1})\right) \rightarrow \varphi(\vec{v}_N)$$ \hspace{1cm} (4)

Note that any formula F that over-approximates the initial states is a 0-invariant. A formula φ is k-inductive invariant if it is a k-invariant and

$$\left(\bigwedge_{i=0}^{k} \varphi(\vec{v}_i) \wedge Tr(\vec{v}_i, \vec{v}_{i+1})\right) \rightarrow \varphi(\vec{v}_{k+1})$$ \hspace{1cm} (5)

The definition of k-induction naturally extends to k-inductive relative to some 0-invariant formula F, by replacing all but the last occurrence of φ in eq. (4) with $(\varphi \land F)$.

Neither induction nor k-induction are complete. That is, there are a transition system Tr and an invariant φ such that φ is not k-inductive for any k. However, as shown in [1], k-induction is complete when restricted to loop-free (or simple) paths. That is, the antecedent of eq. (5) is strengthened to ensure that the sequence $\vec{v}_0, \ldots, \vec{v}_{k+1}$ is loop free.

C. Description of IC3

We give a brief description of IC3 that highlights some steps, but omits many crucial optimizations. We refer the reader to [10] for an overview of available optimizations and their possible implementations.

IC3 maintains a sequence of sets of clauses F_0, F_1, \ldots called an inductive trace. Each set of clauses F_i in a trace is called a frame, each clause $c \in F_i$ is called a lemma, and the index of a frame is called a level. We assume that F_0 is initialized to $Init$ and that $Init \rightarrow \neg Bad$. IC3 maintains the following invariant:

$$F_i \rightarrow \neg Bad \quad F_{i+1} \subseteq F_i \quad F_i \land Tr \rightarrow F_{i+1}'$$

That is, each element of the trace is safe, the trace is syntactically monotone, and each F_{i+1} is inductive relative to F_i.

Fig. 1 presents the blocking procedure of IC3. The inputs to IC3_Block are a state s_0 and a level f_0, with $\neg s_0$ already known to be (f_0-1)-invariant. The procedure either strengthens the inductive trace and returns BLOCKED indicating that $\neg s_0$ is f_0-invariant, or finds a counterexample trace witnessing that s_0 is reachable from $Init$ and returns CEX.

IC3_Block maintains a queue of proof obligations (or CIT's) of the form (s, f) where s is a cube over state variables and f is a level. At each point of the execution, it considers a proof obligation (s, f) with the smallest level f, and attempts to prove that s is reachable in f steps. If $f = 0$ then there is a real counterexample. Otherwise, it makes a predecessor query $SAT(\neg s \land F_{f-1} \land Tr \land s')$ that checks whether a state in s can be reached from a state in F_{f-1}. If the result is satisfiable, it adds a predecessor of s as a new proof obligation at level $f - 1$. If the result is unsatisfiable, it learns a new lemma c, such that $Init \rightarrow c, \neg c \rightarrow s$ and $c \land F_{f-1} \land Tr \rightarrow c'$, and adds c to F_f, for all $j \leq f$. In other words, the lemma c represents a new over-approximation, and in particular demonstrates why the state s cannot be reached in up to f steps from the initial states. An important optimization is to re-enqueue s at the lowest unknown frame.

Each time that IC3 blocks Bad for one additional level, it enters a propagation phase, in which for each level f and for each lemma $c \in F_i \setminus F_{f+1}$, it executes the following SAT query: $SAT(\neg c \land F_f \land Tr \land \neg c')$. Whenever this query is unsatisfiable, the lemma c can be added to frame F_{f+1}.

IC3 terminates if at any point of the execution $F_{f-1} = F_f$ and $F_f \rightarrow \neg Bad$. In this case F_f represents an inductive invariant establishing the correctness of the property.
III. K-INDUCTION WITHOUT UNROLLING

In this section we present K-Ind, an algorithm for deciding whether a given k-invariant formula is k-inductive. Unlike the traditional approach that reduces k-induction to BMC by unrolling the transition relation, our algorithm is based on IC3, and maintains only a single copy of the transition relation. In addition, unlike the traditional approach, K-Ind guarantees loop-free paths without introducing expensive unique-state constraints. In the rest of this section, we present the algorithm, argue for its correctness, and illustrate it on an example.

A. The Algorithm

The pseudo-code of K-Ind is shown in Fig. 2. The inputs to K-Ind are a number k determining the depth of induction, a k-invariant formula ℓ, and a 0-invariant F_0. For simplicity of presentation, we require that ℓ is a clause. The algorithm returns one of three values: CEX to indicate that ℓ is not $(k+1)$-inductive, K-CTI to indicate that ℓ is not k-inductive relative to F_0, and a tuple (BLOCKED, G) to indicate that ℓ is k-inductive relative to F_0, and G is an inductive strengthening of ℓ (i.e., G contains ℓ and is inductive relative to F_0).

K-Ind closely follows the blocking procedure of IC3 (shown in Fig. 1) with several important differences that are highlighted next. First, all SAT-queries are made relative to the single frame F. This can alternatively be explained as IC3_Block in which all frames are the same and do not necessarily form an inductive trace. Second, a lemma learned at any stage of the algorithm holds for all frames. Hence, discharged proof obligations are not re-enqueued to higher levels. In particular, the priority queue Q acts as a LIFO stack. Third, the level of a proof obligation represents how much remaining budget it has rather than the frame on which it should be blocked. Fourth, the assertion on line 5 holds. Fifth, the negation of the predecessor to be blocked is assumed during blocking of all of its descendants (line 6). Lastly, the generalization of predecessors is done with respect to the frame F so that the assertion on line 12 holds.

B. Correctness

In the following, we establish the correctness of K-Ind. Our correctness argument is partitioned into two cases: (1) K-Ind returns CEX or K-CTI, and (2) it returns BLOCKED.

Lemma 1 Let k be a natural number, a clause ℓ be a k-invariant, and F_0 be a 0-invariant. If K-Ind(k, ℓ, F_0) returns CEX, then ℓ is not a $(k+1)$-invariant, and if it returns K-CTI then ℓ is not k-inductive relative to F_0.

Proof: Similarly to IC3_Block, whenever K-Ind reaches line 6, the queue Q contains a loop-free sequence of $k+1$ states consistent with F_0 and satisfying the transition relation. This sequence witnesses that ℓ is not k-inductive. Furthermore, if it intersects with the initial state, then ℓ does not hold after $(k+1)$ steps of the transition relation. Hence, ℓ is not $(k+1)$-invariant.

Lemma 2 Let k be a natural number, a clause ℓ be a k-invariant, and F_0 be a 0-invariant. If K-Ind(k, ℓ, F_0) returns a tuple (BLOCKED, G), then G is an inductive strengthening of ℓ relative to F_0.

Proof: By construction, G contains ℓ and is inductive relative to F. Whenever K-Ind terminates with BLOCKED, every state that has ever been added to Q is blocked. Hence, for every clause c in $F \setminus F_0$ there is a stronger clause d in G. Thus, G is also inductive relative to F_0.

Theorem 1 Let k be a natural number, a clause ℓ be a k-invariant, and F_0 be 0-invariant. Then, assuming that Generalize($\neg s$) always returns $\neg s$, K-Ind(k, ℓ, F_0) terminates and returns BLOCKED iff ℓ is k-inductive relative to F_0, CEX iff ℓ is not $(k+1)$-invariant, and K-CTI iff ℓ is not k-inductive relative to $(k+1)$-invariant.

Proof: We only need to show termination. The rest follows from Lemma 1 and Lemma 2. The number of iterations of the outer loop is bounded by the number of clauses (or cubes). At every iteration of the loop, either a new predecessor is added to the queue Q, or a new clause is added to frame F. No predecessor is added more than once. All the clauses in F are distinct.

The assumption that Generalize($\neg s$) always returns $\neg s$ in Theorem 1 is needed only to guarantee that K-CTI is returned whenever ℓ is not k-inductive. Removing this assumption makes the algorithm stronger by allowing it to find an inductive strengthening of ℓ even when ℓ is not k-inductive (of course, this is only possible when ℓ is an invariant).

Interestingly, K-Ind is complete in the sense that if ℓ is an invariant, then there is a k such that K-Ind(k, ℓ, T) returns BLOCKED. This follows from the fact that K-Ind only considers loop-free counterexamples to k-induction. Note that restriction to loop-free paths follows from assuming the negation of a state to be blocked (line 9). This is a simpler alternative to a traditional approach of encoding loop-freedom of a path via an explicit unique-states constraint.

C. An Example

In this section, we illustrate K-Ind and highlight the difference with IC3_Block on an example. Consider the
following transition system P

\[V = \{x, a, b, c\} \]

\[\text{Init} \equiv x \land a \land b \land c \]

\[\text{Tr} \equiv (x' = \neg x \lor a \lor b \lor c) \land (a' = a \lor b) \land (b' = c) \land (c' = 0) \]

\[\text{Bad} \equiv \neg x \]

Note that $a = 1$ and $x = 1$ are invariants of P, while $b = 1$ and $c = 1$ are not. In fact, $c = 1$ only holds on the initial cycle, and $b = 1$ only holds on the first two cycles. Consider the property $\ell \equiv \neg \text{Bad} = (x = 1)$. ℓ is not 1-inductive but is 2-inductive.

We begin by illustrating a run of K-\text{Ind} with inputs: $\ell = \{x = 1\}$, $k = 2$ and $F_0 = \top$. On the first iteration of the loop, F is updated to (x), and the predecessor query for s_0 relative to F yields a SAT query:

\[(x) \land (x' = \neg x \lor a \lor b \lor c) \land (a' = a \lor b) \land (b' = c) \land (c' = 0) \land (x' = 0) \]

This query is satisfiable. This, in particular, shows that ℓ is not 1-inductive. The corresponding predecessor is

\[t = \{x = 1, a = 0, b = 0, c = 0\} \]

On the second iteration of the loop, F is updated to $(x) \land (\neg x \lor a \lor b \lor c)$, and the predecessor query for t relative to F yields a SAT query:

\[(x) \land (\neg x \lor a \lor b \lor c) \land (x' = \neg x \lor a \lor b \lor c) \land (a' = a \lor b) \land (b' = c) \land (c' = 0) \land (x' = 1) \land (a' = 0) \land (b' = 0) \land (c' = 0) \]

This query is unsatisfiable. Assuming that Generalize does not remove any literals, K-\text{Ind} learns the lemma $(\neg x \lor a \lor b \lor c)$ and adds it to F. With the proof obligation t being blocked, the algorithm re-examines ℓ, and makes the predecessor query

\[(x) \land (\neg x \lor a \lor b \lor c) \land (x' = \neg x \lor a \lor b \lor c) \land (a' = a \lor b) \land (b' = c) \land (c' = 0) \land (x' = 0) \]

This query is also unsatisfiable. The algorithm outputs BLOCKED, with the constructed 1-inductive strengthening of φ being $\psi = x \land (\neg x \lor a \lor b \lor c)$. Finally, we note that generalization relative to F (the procedure Generalize) could have also yielded the lemma $(a = 1)$ (resulting in the strengthening $(x \land a)$), but could not have yielded lemma $(b = 1)$ since $(b = 1)$ is not inductive relative to $(x) \land (\neg x \lor a \lor b \lor c)$.

Next, consider $IC3$ on the same example. The blocking procedure of $IC3$ similarly finds t as a predecessor of s, but makes the next predecessor query relative to $F_0 = \text{Init}$. More importantly, it calls Generalize on $(\neg x \lor a \lor b \lor c)$ relative to F_0, possibly learning the lemma $(b = 0)$ instead. Then, $IC3$ concludes that s_0 is blocked on level 2. However, since $(x) \land (b)$ is not an inductive invariant, $IC3$ needs to unfold the trace for an additional frame and continue blocking s on frame 3.

This example shows that K-\text{Ind} guarantees to strengthen a k-inductive property to an inductive one, while $IC3$ does not provide any such guarantees.

Input: A state s_0 and a level f_0 s.t. $\neg s_0$ is $(f_0 - 1)$-inductive

1. $\text{res} \leftarrow \text{UNKNOWN}$
2. while $\text{res} = \text{UNKNOWN}$ do
 3. $\text{strategy} \leftarrow \text{AdjustStrategy}()$
 4. $\text{res} \leftarrow \text{BlockUsingStrategy}(s_0, f_0, \text{strategy})$
5. return res

Fig. 3. KIC3 Top-level blocking (KIC3_Block).

IV. KIC3: K-INDUCTIVE IC3 ALGORITHM

In this section, we describe the KIC3 framework that unifies IC3 and k-induction model checking algorithms. The core of KIC3 is a blocking procedure that integrates IC3_Block with a variant of k-induction. This procedure is then incorporated into a flexible approach for blocking proof obligations and for pushing existing lemmas forward.

A. Top-level blocking in KIC3

A pseudo-code for the top-level blocking procedure, KIC3_Block of KIC3 is shown in Fig. 3. The procedure takes as input a state s_0 and a level f_0 and assumes $\neg s_0$ is an $(f_0 - 1)$-invariant. The procedure outputs either BLOCKED to indicate that $\neg s_0$ is f-invariant, or CEX to indicate that s_0 is reachable from Init. As in IC3, KIC3 maintains an inductive trace F_0, F_1, \ldots, that is updated throughout the blocking process. Internally, KIC3_Block implements a portfolio approach, delegating lower-level blocking to other procedures such as IC3_Block (shown in Fig. 4), or KIC3_Block_Kind (shown in Fig. 3 and described later in this section). Note that the internal blocking procedure might return UNKNOWN to indicate that it has given up before finding a solution.

B. k-induction blocking in KIC3

Fig. 4 presents the k-inductive blocking procedure KIC3_Block_Kind of KIC3. In addition to a state s_0 and a level f_0, KIC3_Block_Kind requires two parameters: k_0 — the induction depth, and m_0 — the maximum number of predecessors to k-induction to be blocked by an external blocking procedure. The output of KIC3_Block_Kind is one of BLOCKED, CEX or UNKNOWN. As s_0 is only known to be $(f_0 - 1)$-inductive, the actual induction depth k is set to the smaller of the two values k_0 and f_0 (line 4). Our algorithm is strongly reminiscent of both IC3_Block and K-\text{Ind}, with several important differences that are described below.

First, all SAT queries (line 16) are performed relative to the same frame F_{f_0-1}. The level f of a proof obligation (s, f) has a slightly different interpretation than in IC3_Block; s is guaranteed to be unreachable from Init in $f - 1$ steps or less (assertion on line 5). The same queue management strategy as in IC3_Block is used. That is, proof obligations with lowest levels are chosen first. As in K-\text{Ind}, all the learned lemmas hold up to level f_0. The discharged proof obligations do not need to be re-enqueued, and the priority queue Q acts as a LIFO stack. However, unlike K-\text{Ind}, the query on line 16 does not fully implement loop-free paths, and instead a more relaxed condition of IC3_Block is used.
\textbf{Input:} A state s_0 and a level f_0 s.t. $\neg s_0$ is
(f-1)-inductive; parameters k_0 and m_0

\begin{verbatim}
1 k ← \text{min}(k_0, f_0)
2 m ← 0
3 Add(Q, (s_0, f_0))
while \text{Empty}(Q) do
 (s, f) ← \text{Pop}(Q)
 assert \neg s is (f-1)-invariant
 if f = f_0 - k then
 // Found cex to k-induction
 if m < m_0 then
 m ← m + 1
 if BlockInRange(s, f_0 - k, f_0) = CEX
 \text{return CEX}
 else if (f = 0) \land (s \cap Init \neq \emptyset) then
 \text{return CEX}
 else
 \text{return UNKNOWN}
 if SAT(\neg s \land F_{f_0-1} \land Tr \land s') then
 t ← \text{ExtractPredecessor}(s)
 Add(Q, (t, f - 1))
 Add(Q, (s, f))
 else
 (c, g) ← \text{Generalize}(\neg s, f_0)
 AddLemma(c, g)
\text{return BLOCKED}
\end{verbatim}

Fig. 4. KIC3 blocking using k-induction (KIC3_Block_Kind).

\textbf{Input:} A state s_0, levels f_0 and f_1 s.t. s_0 is
(f-1)-invariant

\begin{verbatim}
1 for f = f_0, \ldots, f_1 do
 if (f = 0) \land (s_0 \cap Init \neq \emptyset) then
 \text{return CEX}
 if (f \neq 0) \land (KIC3_Block(s_0, f) = CEX) then
 \text{return CEX}
\text{return BLOCKED}
\end{verbatim}

Fig. 5. KIC3 Top-level blocking in a range of frames (BlockInRange).

Second, when a proof obligation (s, f) at level f = f_0 - k
is examined, and consequently a K-CTI is discovered, the algo-

rithm may attempt to recover by blocking this counterexample
to k-induction. Since \neg s is (f-1)-invariant, s needs to be
blocked in every level in the range [f_0-k, f_0] (see line 10). The
implementation of BlockInRange is shown in Fig. 5. As usual, we require that \neg s_0 is (f-1)-invariant. The procedure
iterates over levels from f_0 to f_1 and calls KIC3_Block to
block s_0 at the corresponding level. It returns BLOCKED if
s_0 is blocked on all levels in [f_0, f_1] (and hence \neg s_0 is f$-i

n$-invariant), and CEX otherwise.

Third, there is a parameter to limit the number of K-CTIs
considered. When the number of K-CTIs reaches the maximum
number m_0, KIC3_Block_Kind returns UNKNOWN. Note that whenever m_0 = 0, the external blocking procedure is
not used at all, and KIC3_Block_Kind returns UNKNOWN
(or possibly CEX) as soon as the first K-CTI is discovered.
This limits the algorithm to only learn “high-quality” lemmas
that hold up to level f_0, at the risk of eventually returning
UNKNOWN sooner. On the other hand, when m_0 = \infty, all the
K-CTIs are blocked with an external blocking procedure. In
this case, KIC3_Block_Kind is also guaranteed to return
either BLOCKED or CEX (and to never return UNKNOWN).

\section{Correctness and Termination}

In this section, we argue the correctness of KIC3_Block_Kind.
First, the assertion on line 6 holds:
the top-level proof obligation s_0 satisfies the assertion by
assumption, and other proof obligations are added on line 18
and satisfy the assertion due to the following lemma.

\textbf{Lemma 3} Let s be a state, and f \geq 0 be a natural number,
such that \neg s is f-invariant. Let t be a predecessor of s. Then
\neg t is (f-1)-invariant.

\textbf{Proof:} By contradiction. Assume \neg t is not (f-1-

n$-invariant. Then, there is a counterexample trace \pi of length
at most f that reaches t from the initial states. Since t is a
predecessor of s, there is a one-transition extension of \pi that
shows that \neg s is not f-invariant.

Second, whenever KIC3_Block_Kind reaches line 13
the queue Q contains a sequence \pi of k + 1 states satisfying
the transition relation, with the first state in the sequence
intersecting the initial states, and the last state intersecting
s_0. The path \pi shows that s_0 is reachable from Init in k+1 steps.

Third, whenever the algorithm reaches line 23, correctness
is argued as in IC3: each lemma c added in line 22 satisfies
Init \rightarrow g and g \land F_{f_0-1} \land Tr \rightarrow g, and, hence, is inductive
relative to F_{f_0-1}.

Fourth, whenever KIC3_Block_Kind calls
BlockInRange recursively with a state s, by construction
BlockInRange always calls an internal blocking procedure
at the lowest level at which s is not yet blocked. Thus, the
pre-conditions of the internal blocking procedure are satisfied.

Finally, the recursion of BlockInRange is well
founded. Suppose that KIC3_Block_Kind(s_0, f_0)
calls BlockInRange which, in turn, calls
KIC3_Block_Kind(s_1, f_1). Then either f_1 < f_0, or
f_1 = f_0 and, thus, BlockInRange has already blocked s_1
at level f_0 - 1 and learned a new lemma. Thus, in both cases
the recursion makes a progress and must terminate.

\section{Discussion}

It is interesting to contrast the blocking strategies in IC3
and KIC3. IC3_Block blocks each proof obligation at the
lowest level it is yet unknown. Thus, if (s, f) \in Q is a proof
obligation and t is a predecessor of s, then IC3_Block
recursively attempts to block t at level f - 1, and, if suc-

cessful, blocks t at level f as well. On the other hand, KIC3_Block
attempts to directly block t at level f, without blocking it at level f - 1 first. Thus, from a high-level perspective, KIC3_Block_Kind is a variant of
IC3_Block, with a different counterexample-queue manage-
ment strategy.

By always making SAT queries relative to the frame F_{f_0-1},
KIC3 essentially ignores all lemmas not in F_{f_0-1}. On the
other hand, this may force it to spend more effort on blocking
the top-level proof obligation (s_0, f_0). On the other hand, all
learned lemmas automatically hold up to level \(f_0 \). Intuitively, since the lemmas are true for more steps of the transition relation they are of a “higher-quality”, i.e., more likely to be part of the final inductive invariant.

Note that while \(\text{KIC3_Block_Kind} \) is similar to \(\text{K-Ind} \), it does not fully incorporate the search for loop-free paths. This might be important when proof obligations are not enqueued at their lowest unknown levels. In particular, \(\text{KIC3_Block_Kind} \) may fail to find an inductive strengthening of \(\neg s_0 \), even when \(s_0 \) is \(k \)-inductive relative to \(F_{f_0-1} \). Addressing this deficiency requires an ability to remove lemmas from frames in an \(\text{IC3} \) framework. Developing support for this feature is an interesting direction for future work.

Another interesting technical dilemma reflects predecessor generalization on line 17 of \(\text{KIC3_Block_Kind} \). More precisely, when the SAT query \(\text{SAT}(\neg s \land F_{f_0-1} \land Tr \land s') \) is satisfiable, with \(t \) being the predecessor of \(s \), it is customary to generalize \(t \) to a larger set of states \(t \) such that any state in \(t \) leads to \(s \) [5]. In practice, it is not clear whether it is desirable to additionally enforce that \(t \to F_{f_0-1} \) and \(t \to \neg s \). On the one hand, generalizing predecessors with respect to \(s \land F_{f_0-1} \) avoids spurious \(\text{K-CTIs} \). On the other hand, it significantly increases the sizes of proof obligations considered. We do not take these additional constraints into account in our experiments.

E. Portfolio blocking strategies

In this section, we describe the portfolio blocking strategies used in the experimental evaluation. Given a state \(s_0 \) to be blocked at level \(f_0 \), the \(B(k_0, m_0) \)-strategy with \(1 \leq k_0 \leq \infty \) and \(0 \leq m_0 \leq \infty \) is defined as follows:

\[
B(k_0, m_0) =
\begin{align*}
1) \text{Block} (s_0, f_0) \text{ using } \text{KIC3_Block_Kind} \text{ with the induction depth } k_0, \text{ the maximum number of } \text{K-CTIs} \text{ in } m_0, \text{ and the procedure } \text{BlockInRange} \text{ realized by } \text{IC3_Block}; \\
2) \text{If the previous procedure returns } \text{UNKNOWN}, \text{ block } (s_0, f_0) \text{ using } \text{IC3_Block}.
\end{align*}
\]

There are several important special cases of this strategy. First, when \(k = \infty, \text{KIC3_Block_Kind} \) is called with the largest induction depth (in other words, \(f_0 \)) allowed for blocking \((s_0, f_0) \). Second, when \(m_0 = 0 \), \(\text{KIC3_Block_Kind} \) returns \(\text{UNKNOWN} \) as soon as the first \(\text{K-CTI} \) is discovered, in the process only learning lemmas at levels at least \(f_0 \). Third, when \(m_0 = \infty, \text{KIC3_Block_Kind} \) blocks all counterexamples to \(k \)-induction using \(\text{IC3_Block} \), and \(\text{IC3_Block} \) is never called directly.

F. Pushing in KIC3

Our generic framework for blocking a state at a specific level can also be used in the pushing stage of \(\text{IC3} \). The pseudocode of \(\text{KIC3_Push} \) is shown in Fig. 6. Lines 1-5 implement the traditional pushing procedure: when a lemma \(c \in F_f \setminus F_{f+1} \) is inductive relative to \(F_f \), it is also added to the frame \(F_{f+1} \). Interestingly, this process can be reinterpreted as calling \(\text{KIC3_Block_Kind} \) with parameters \(k_0 = 1 \) and \(m_0 = 0 \). On lines 6-7, we propose to additionally push lemmas at the last level of the inductive trace using \(\text{KIC3_Block_Kind} \) with a larger value of \(k_0 \) (and \(m_0 \) still equal to 0).

There are many alternative ways to integrate \(\text{KIC3_Block_Kind} \) into the pushing stage of \(\text{IC3} \). However, as in general \(\text{KIC3_Block_Kind}(\neg c, f + 1) \) can add new lemmas to the level \(f + 1 \), additional care must be taken to guarantee termination of the pushing stage.

V. RELATED AND FUTURE WORK

There is a large body of work on automating \(k \)-induction using SAT-based reasoning and on unbounded model checking using \(\text{IC3} \). We focus only on the most closely related work.

It is well-known that \(k \)-induction principle is stronger than induction. In fact, \(k \)-induction is complete when restricted to loop-free paths while induction is not. Bjørner et al. [11] show that any \(k \)-inductive property can be converted into an inductive property by interpolation. Thus, the size of an inductive property is linear in the size of the resolution proof of the corresponding \(k \)-inductive property. Our \(\text{K-Ind} \) algorithm is a constructive proof of this fact. Given a \(k \)-inductive property, \(\text{K-Ind} \) constructs an inductive certificate in \(\text{CNF} \).

\(\text{K-Ind} \) is built on top of the blocking procedure of \(\text{IC3} \) and shares many similarities with it. When the property \(\varphi \) under consideration is \(k \)-inductive, both \(\text{K-Ind} \) (instantiated with the induction depth at least \(k \)) and \(\text{IC3} \) are guaranteed to terminate and to discover a suitable inductive strengthening of \(\varphi \). However, \(\text{K-Ind} \) is guaranteed to only learn \(k \)-inductive lemmas, while \(\text{IC3} \) provides no such guarantees. In particular, the convergence depth of \(\text{IC3} \) might be significantly larger than \(k \). We believe that this is an important theoretical advantage of \(\text{K-Ind} \) over \(\text{IC3} \). Unfortunately, our \(\text{KIC3_Block_Kind} \) in the \(\text{IC3} \) framework does not guarantee to converge in \(k \) steps, making it closer to \(\text{IC3_Block} \) than to \(\text{K-Ind} \). Addressing this deficiency is an interesting topic for future work.

In Quip [9], a variant of \(\text{IC3} \), a maximal inductive subset of all the lemmas is explicitly computed and maintained in a separate frame. This guarantees that Quip converges as soon as the trace contains an inductive subset. It is interesting to extend \(\text{KIC3} \) to guarantee convergence as soon as the trace contains a \(k \)-inductive subset. Using \(\text{KIC3_Block_Kind} \) for pushing, as suggested in Section IV-F, is a step in that direction.

The PD-\(\text{Kind} \) algorithm of Jovanovic and Dutertre [6] is closest to ours, and has inspired our work. The main difference is that we have tried to integrate \(k \)-induction into \(\text{IC3} \) with the fewest modifications of the \(\text{IC3} \) framework. For example, PD-\(\text{Kind} \) requires unrolling the transition relation for validating \(k \)-induction queries, while \(\text{KIC3} \) does not. Unfortunately, a direct experimental comparison of \(\text{KIC3} \) and PD-\(\text{Kind} \) is difficult, as PD-\(\text{Kind} \) is implemented at the level
of SMT and does not target hardware benchmarks. Further, in our experience, a direct implementation of PD-KIND for hardware does not scale, as unrolling the transition relation has a huge negative effect on many benchmarks. At the same time, using k-induction for pushing clauses on the last frame, as we suggest in KIC3_Push in Section IV-F, while blocking all predecessors to k-induction using IC3_Block, is closely related to the PUSH procedure in PD-Kind. Overall, adapting the ideas of PD-Kind to hardware is a non-trivial task, and to some extent our algorithm can be viewed as a step in this direction.

Recall that KIC3_Block_Kind can be seen as IC3_Block with a specialized counterexample-queue management. Alternatively, KIC3_Block_Kind can also be seen as a form of abstraction. Whenever a proof obligation (s,f) should be blocked, traditionally, we check whether $\neg s$ is inductive relative to F_{i-1}. However, any abstraction of F_{i-1} can be used as well. For example, using only lemmas that are also in F_i as the abstraction closely corresponds to KIC3.

VI. EXPERIMENTS

The techniques presented in this paper are implemented on top of Quip (a variant of IC3 presented in [9]) in the IBM formal verification tool IBM RuleBase SixthSense Edition [12], [13]. All experiments were performed on a 2.13GHz Linux-based machine with Intel Xeon E7-4830 processor and 16GB of RAM. We have used all single property designs from the HWMCC’15 benchmark set. Each design is initially simplified using standard logic synthesis techniques (similar to the &dc2 command in ABC [14]). We used a timeout of 900 seconds.

<table>
<thead>
<tr>
<th>Technique</th>
<th>Solved</th>
<th>Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quip</td>
<td>230</td>
<td>52.776</td>
</tr>
<tr>
<td>$B(5, 0)$</td>
<td>233</td>
<td>51.699</td>
</tr>
<tr>
<td>$B(5, 6)$</td>
<td>244</td>
<td>57.864</td>
</tr>
<tr>
<td>$B(5, \infty)$</td>
<td>212</td>
<td>68.012</td>
</tr>
<tr>
<td>$B(\infty, 0)$</td>
<td>229</td>
<td>53.757</td>
</tr>
<tr>
<td>$B(\infty, 5)$</td>
<td>223</td>
<td>57.551</td>
</tr>
<tr>
<td>$B(\infty, \infty)$</td>
<td>219</td>
<td>62.397</td>
</tr>
</tbody>
</table>

We omit a direct experimental comparison to the original k-induction algorithm, as k-induction solves tremendously fewer properties than any of the IC3-based techniques. On the other hand, on most of the (few) properties that k-induction is able to solve, the value of k is small. In these cases, k-induction (based on unrolling the transition relation) usually outperforms IC3-based techniques, in the same manner as BMC usually outperforms IC3 when searching for counterexamples.

We focus the experimental evaluation on the comparison of Quip and KIC3 with different blocking strategies. The experiments are presented for 238 designs – which are all of the designs that remain after removing all instances solved by logic synthesis alone and all instances not solved by any of the techniques. Recall that the blocking strategy $B(k_0, m_0)$ means that KIC3_Block_Kind is called with induction depth k_0 and at most m_0 K-CIts. We say that $k_0 = \infty$ whenever a proof obligation is always blocked with the largest possible induction depth. In what follows, we report the results for 6 different configurations of KIC3, obtained by setting k_0 to either 5 or ∞, and setting m_0 to either 0, 5, or ∞. A summary of the overall results is shown in Table I. The columns Solved and Time represent the total number of instances solved.

Fig. 7. Summary of experimental results comparing KIC3 (y-axis) with Quip (x-axis) on benchmarks from HWMCC’15.
and the cumulative time in seconds, respectively. A detailed comparison between Quip and each KIC3 variant is shown in the scatter plots in Fig. [4] For each of the plots the horizontal axis measures the runtime of Quip, while the vertical axis measures the runtime of KIC3 with the corresponding k-induction blocking strategy. Thus, points below the diagonal represent wins for the pure Quip approach, and vice versa.

According to the experiments, the blocking strategy $B(5,0)$ performs the best, slightly outperforming Quip by solving 3 more instances in less time. Furthermore, from the plot on the top-left, we can see that the total runtimes of Quip and KIC3 with $B(5,0)$ are fairly well correlated, as most points are in the vicinity of the diagonal. However, a more detailed analysis shows that about 30% of the total time to block a proof obligation is spent in the KIC3.Block.Kind part of the procedure, so the actual profiles of the two algorithms are significantly different.

We have also experimented with other blocking strategies $B(k_0,0)$, and in general all the results are highly consistent. For example, the “extreme” configuration $B(\infty,0)$ solves 4 instance less than $B(5,0)$ (and 1 instance less than Quip), and the plot on the bottom-left still shows high correlation with Quip.

At the same time, increasing the number m_0 of K-Ctts has a clear negative effect on the algorithm’s performance for almost every k_0. The three top plots demonstrate this for $k_0 = 5$, while the three bottom plots demonstrate this for $k_0 = \infty$. However, we can also note that Quip and KIC3 become less correlated as m_0 is increased, while some instances get solved faster than before.

VII. CONCLUSIONS

In this work, we present an algorithm to decide whether a given safety property is k-inductive. This algorithm is based on the insights from IC3, and does not explicitly unroll the transition relation or add unique-state constraints to guarantee simple paths. In addition, we show how k-induction can be integrated into IC3 with minor modifications of the IC3-framework. On the practical side, a preliminary experimental evaluation shows a potential benefit of the suggested methods.

REFERENCES

