SCert: Speculative Certification in Replicated Software Transactional Memories

Nuno Carvalho Paolo Romano Luís Rodrigues

INESC-ID/IST

May 31, 2011
Roadmap

Motivation

Related Work

SCert

Examples

Results

Conclusions
Roadmap

<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation</td>
</tr>
<tr>
<td>Related Work</td>
</tr>
<tr>
<td>SCert</td>
</tr>
<tr>
<td>Examples</td>
</tr>
<tr>
<td>Results</td>
</tr>
<tr>
<td>Conclusions</td>
</tr>
</tbody>
</table>
Transactional Memory

- Set of mechanisms for shared memory access
- Uses the concept of *Transaction*

Programmers only indicate the set of operations that must be performed atomically: simpler than using Locks explicitly
Distributed Transactional Memory

Provides fault tolerance and increased performance

DSTM vs Distributed Shared Memory

- *Similar*: Hides the distribution from the programmers
- *Different*: Synchronization is only performed at the transaction boundaries

DSTM vs Replicated Databases

- *Similar*: Atomic Broadcast can be used to achieve a global serialization order
- *Different*: The relative overhead of the Atomic Broadcast is bigger
Example Application

Distributed transactional cache for multi-tier applications

- Allows local processing of requests
- Detects both local and remote conflicts
- Alleviates pressure on back-end persistent storage
FenixEDU

University campus management system

- Used in an engineering school in Portugal
- Real system with real scalability and reliability issues
Goals

Fault tolerance
Using replication schemes, already studied in other transactional systems (Databases)

Scaling up
Scale up in the number of STM instances to increase performance
Key Idea

- Use optimistic message deliveries to estimate the final transaction certification order
- Expose fresh (although possibly erroneous) data to new transactions
- Reduce the abort rate and detect conflicts earlier
Roadmap

Motivation

Related Work

SCert

Examples

Results

Conclusions
Distributed STMs

- Distributed Multi Versioning (Manassiev et al.)
- DiSTM (Kotselidis et al.)
- Cluster-STM (Bocchino et al.)

Fault tolerance is not the focus of previous work
Replicated STMs/DBMS

- Active replication without speculation:
 - (Kemme et al.) – uses optimistic total order to speedup commit but does not make speculative results visible
- Active replication with speculation
 - AGGRO (Palmieri et al.) – good for light weight transactions, as all nodes have to execute all transactions
- Certification without speculation
 - D^2STM (Couceiro et al.) and ALC (Carvalho et al.)
Related Work

<table>
<thead>
<tr>
<th>Non-Speculative</th>
<th>Active Replication</th>
<th>Certification</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Kemme et al.)</td>
<td>D²STM and ALC</td>
<td></td>
</tr>
<tr>
<td>Speculative</td>
<td>AGGRO</td>
<td>SCert</td>
</tr>
</tbody>
</table>

SCert: Speculative Certification in Replicated Software Transactional Memories

Nuno Carvalho, Paolo Romano, Luís Rodrigues

INESC-ID/IST – SYSTOR 2011
Replication Protocol Based on Certification

- Executes transactions in a single machine optimistically
- Transactions are certified only at commit time
- Exploits *Atomic Broadcast* to ensure replica consistency
Baseline Replication Protocol

Execution
Transaction T1
P1

Execution
Transaction T2
P2

Validation & Commit
T1

Validation & Commit
T1

Validation & Commit
T2

Validation & Abort
T2

TOB of T1’s read & writerset

TOB of T2’s read & writerset
Baseline Replication Protocol

Execution
Transaction T1
P1

Execution
Transaction T2
P2

TOB of T1’s read & writeset
Validation&Commit T1

TOB of T2’s read & writeset
Validation&Commit T2

Validation&Abort T1

Validation&Abort T2
Certification Based Protocol

Commit (Atomic Broadcast)

Certification and Commit/Abort

P1

P2

P3

Nuno Carvalho, Paolo Romano, Luís Rodrigues

SCert: Speculative Certification in Replicated Software Transactional Memories
Problems of this Approach

- Loss of efficiency in high conflict scenarios
- Uses a heavy communication procedure (Atomic Broadcast)
Optimistic Atomic Broadcast (OAB)

- Delivers the message twice: an early estimate of the final order and the final order itself.
- The estimated order matches the final order with high probability, on LANs.
Roadmap

Motivation

Related Work

SCert

Examples

Results

Conclusions
Speculative Certification (SCert)

- Certification based replication protocol
- Exploits *Optimistic deliveries of OAB* to generate fresh (but possibly erroneous) data
- New transactions read the optimistic data snapshots:
 - Provide executing transactions with *fresher snapshots*, reducing the probability of aborts
 - Detect conflicts earlier, reducing the amount of wasted computation and waiting time
SCert: Architecture
SCert: Architecture

Application

Distributed STM API Wrapper

JVSTM

Speculative Extensions

Replication Manager

Group Communication Service

SCert: Speculative Certification in Replicated Software Transactional Memories
SCert: Architecture

SCert: Speculative Certification in Replicated Software Transactional Memories

Nuno Carvalho, Paolo Romano, Luís Rodrigues

INESC-ID/IST – SYSTOR 2011
Speculative Extensions

- Provide the appropriate tools to expose speculative committed memory snapshots
- Speculative versions must be maintained
- The API must support speculative commits
JVSTM: Regular VBox

VBox

lastCommitted

Ver: 5
Val: 69

Ver: 2
Val: 55

Ver: 1
Val: 5

Nuno Carvalho, Paolo Romano, Luís Rodrigues

SCert: Speculative Certification in Replicated Software Transactional Memories
JVSTM Extensions for Speculative Transactions
SCert Replication Protocol (I)

- Transaction executes locally
- Upon Commit, the thread (locally) certifies the transaction and sends OAB
- Upon Optimistic Delivery, the transaction is certified and optimistically committed
SCert Replication Protocol (II)

- Upon Begin of new transactions, the new threads read the most fresh data (committed optimistically or finally)
- Upon Final Delivery:
 - Order matches: the transaction is marked as committed and the thread is unblocked
 - Order does not match: the optimistically committed snapshot is discarded and pending transactions must be re-certified
Roadmap

Motivation

Related Work

SCert

Examples

Results

Conclusions
Regular Certification: Cascading Aborts Due to Conflicts
SCert: Cascading Commits

SCert: Speculative Certification in Replicated Software Transactional Memories

Nuno Carvalho, Paolo Romano, Luís Rodrigues

INESC-ID/IST – SYSTOR 2011
Regular Certification: Wasted Time

T1
... w(x^1)

TO-del(T1)

Com. T1

T2
... r(x^0)....

TO-del(T2)

Abort T2
SCert: Early Notification

- **T1**: Speculative Certification
 - `w(x)`
 - **Opt-del(T1)**
 - **SC T1**
 - **TO-del(T1)**

- **T2**: Aborted Transaction
 - `r(x)`
 - **Abort T2**
 - **SC T1**
 - **TO-del(T1)**

- **FC T1**: Final Commit
Roadmap

Motivation

Related Work

SCert

Examples

Results

Conclusions
Bank Benchmark: Full Conflict Scenario

- Goal: worst case
- Replicas accessing the same memory region
Bank Benchmark: Throughput in Worst Scenario

On avg. 1.5x speedup with one thread and up to 4.5x speedup with 8 threads per replica
Bank Benchmark: Abort Rate

![Graph showing the abort rate (%) for different numbers of replicas for SCert and CERT. The graph indicates that the abort rate increases with the number of replicas.]

1 thread per replica

Motivation

Related Work

SCert

Examples

Results

Conclusions

Nuno Carvalho, Paolo Romano, Luís Rodrigues

INESC-ID/IST – SYSTOR 2011
Bank Benchmark: Abort Rate

8 threads per replica
STMBench7 Benchmark: Scenario

- **Goal**: more complex benchmark
- **Richer benchmark** featuring a number of operations with different levels of complexity over an object-graph with millions of objects
- **Number of machines** between 2 and 8
- **Number of threads** fixed to 2
STMBench7 Benchmark: Speedup

Almost twice speedup with a low number of replicas
STMBench7 Benchmark: Abort Rate

Abort rate (%) vs. # Replicas for SCert and CERT.

Nuno Carvalho, Paolo Romano, Luís Rodrigues
INESC-ID/IST – SYSTOR 2011

SCert: Speculative Certification in Replicated Software Transactional Memories
Roadmap

Motivation

Related Work

SCert

Examples

Results

Conclusions
Conclusions

- Reduce the number of transactions that read stale data
- Allows early detection of conflicts among transactions
- Performance improvements are achieved by exploiting optimistic deliveries of OAB
 - Up to 4.5x speed-ups
Thank you!

Questions?