Highly-Concurrent
Data Structures

Hagit Attiya and Eshcar Hillel
Computer Science Department
Technion

Talk Overview

What are highly-concurrent data structures
and why we care about them

The concurrency of existing implementation
techniques

Two ideas for increasing concurrency:
o Conflict management => Transactional memory
o Locking order => Doubly-linked list

LADIS / March 2007 Highly-concurrent data structures

'Data Items and Operations

A data structure is a
collection of items

An operation accesses a
data set

not necessarily a pair
A collection of operations
iInduces a conflict graph

o Nodes represent items

o Edges connect items of
the same operation

LADIS / Match 2007 Highly-concurrent data structures 3

‘ Spatial Relations between Operations

= Disjoint access
» Non adjacent edges
» Distance is infinite

= Overlapping operations
» Adjacent edges
» Distanceis 0 ‘

= Chains of operations
» Paths

» Distance is length of path
(in the example, 2)

LADIS / Match 2007 Highly-concurrent data structures 4

‘ Interference between Operations

= Disjoint access
= Overlapping operations

= Non-overlapping
operations

should not
interfere

Provides more concurrency
& yields better throughput

LADIS / March 2007 Highly-concurrent data structures

Measuring Non-Interference (LLocality)

[Afek, Merritt, Taubenfeld, Touitou]

Distance in the conflict graph
between overlapping operations
that interfere

= O-local step complexity:
Only operations at distance < d
delay each other

= d-local contention:
Only operations at distance < d
access the same location

LADIS / Match 2007 Highly-concurrent data structures 6

Talk Overview

The concurrency of existing implementation
techniques

Two ideas for increasing concurrency:
o Conflict management => Transactional memory
o Locking order => Doubly-linked list

LADIS / March 2007 Highly-concurrent data structures

Virtual Locking

It is easy to implement concurrent data structures

If an arbitrary number of data items can be modified
atomically

Simulate with single-item Compare & Swap (CAS):

o Acquire virtual locks on nodes in the data set
Perhaps in some order

o Handle conflicts with blocking operations (holding a
required data item)

soessse

LADIS / March 2007 Highly-concurrent data structures

‘ A Nonblocking Implementation

[Turek, Shasha, Prakash] [Barnes]

= Acquire locks by increasing addresses
o Guarantees progress (the implementation is nonblocking)

= Help the blocking operation to complete (recursively)

= May result in long helping chains

o n-local step complexity
o n-local contention

LADIS / March 2007 Highly-concurrent data structures

Reducing Contention

[Shavit, Touitou]
Release locks when the operation is blocked
Help an immediate neighbor (only) & retry...

Short helping chains
o O(1)-local contention

Long delay chains
o n-local step complexity

eeooees

LADIS / March 2007 Highly-concurrent data structures

10

Color-Based Virtual Locking (Binary)

[Attiya, Dagan]
Operations on two data items (e.g., DCAS)
Colors define the locking order
o Inspired by the left-right dinning philosophers algorithm [Lynch]
Color the items when the operation starts
o Non-trivial... [Cole, Vishkin]
Bound the length of delay chains
o (log*n)-local contention and step complexity
o Due to the coloring stage

< <.

LADIS / March 2007 Highly-concurrent data structures 11

Color-Based Virtual Locking (Fixed k)

[Afek, Merritt, Taubenfeld, Touitou]
Implements operations on k items, for a fixed k

Based on the memory addresses, the conflict graph
Is decomposed into trees & items are legally colored

[Goldberg, Plotkin, Shannon]
o Need to have the data set from the start %

o Recursive, with A&D at the basis and in each step
o Even more complicated
o (k+log*n)-local contention and step complexity

LADIS / March 2007 Highly-concurrent data structures 12

Talk Overview

Two ideas for increasing concurrency:
o Conflict management => Transactional memory
o Locking order => Doubly-linked list

LADIS / March 2007 Highly-concurrent data structures

13

Transactional Memory

Software transactional memory (STM)
allows to specify a transaction,
accessing an arbitrary data set,

as if executed atomically

o Static (data set is declared at invocation) vs.
dynamic (data set is provided one-by-one)

@ earSpead
Alleged to be a silver bullet for HPC & @?m
Concurre nt programming The Leading Source for Global News and Information Covering the Ec

Home Page | Free Subscription | A

Features:

Getting Serious About Transactional Memory
by Michael Feldman
Editor, HP Cwire

The parallelizaton of computing, wa mult-threading cores, multi-core processors
B . e U PU S S TISE PRt EEOE W R RCR S £y R BRI,) o Pyt

b ol o PPUAR I SR R F R R L

LADIS / March 2007 Highly-concurrent data structures 14

Locality of Known STMs

Known STMs have O(n)-local step complexity
o Some also O(n)-local contention

AMTT can be considered as static STM for
fixed-size data sets

o (k+log*n)-local contention and step complexity

o Recursive and restricted

LADIS / March 2007 Highly-concurrent data structures 15

‘ Highly-Concurrent STM

We concentrate on handling conflicts
between operations contending ‘
for a data item

o Wait for the other operation
o Help the other operation
o Rollback the other operation

Acquire “locks” in arbitrary order

o No need to know the data set
(or its size) in advance

o No pre-computation

LADIS / Match 2007 Highly-concurrent data structures 16

‘ Contlict Resolution, How?

Conflict handling depends on the
operations’ progress so-far ‘

More advanced operation gets
the item

1. How to gauge progress?
2. What to do on a tie?

LADIS / Match 2007 Highly-concurrent data structures 17

Who's More Advanced?

The operation that locked more
data items is more advanced

= Locality depends on data set size

If a less advanced operation
needs an item, then

help the conflicting operation or
walit (blocking in a limited radius)

If a more advanced operation
needs an item, then

rollback the conflicting operation
until it releases the item

LADIS / March 2007 Highly-concurrent data structures

Local STM: What about Ties?

2

2@

When both operations locked
the same number of items

Each operation has a descriptor,
holding information about it
and a lock

The operations use DCAS to
race for locking the two
operation descriptors

Winner calls the shots...
There’s (a lot) more...

LADIS / March 2007 Highly-concurrent data structures

‘ Talk Overview

a
o Locking order => Doubly-linked list

LADIS / March 2007 Highly-concurrent data structures

20

Specific Data Structures
Can be viewed as transactional memory

o Our STM is highly-concurrent...
Relies on DCAS

o But has high overhead

Or handled by specialized algorithms
o Ad-hoc and very delicate

o Verification is an issue ﬁ

o Several wrong solutions...

LADIS / March 2007 Highly-concurrent data structures

21

Customized Virtual Locking

Instead of devising ad-hoc solutions,
design algorithms in a systematic manner...

Lock the items that have to be changed &
apply a sequential implementation on these items

Lock items by colors to increase concurrency
Need to re-color at the start of every operation

But in a specific data structure

© We manage a data structure since its infancy

© The data sets of operations are predictable
unlike babies

LADIS / March 2007 Highly-concurrent data structures 22

Specifically: Doubly-Linked Lists

An important special case underlying many
distributed data structures

o E.g., priority queue is used as job queue

Insert and Remove operations

0 Sometimes only at the ends
(priority queues / deques)

o The data set is an item and its left / right
neighbors (or left / right anchor)

LADIS / March 2007 Highly-concurrent data structures 23

Built-In Coloring for Linked Lists

Always maintain the list items legally colored
o Adjacent items have different colors
o Adjust colors when inserting or removing items

o No need to color from scratch in each operation
No cost for coloring W& —

Constant locality

o Esp., operations that access disjoint data sets do
not delay each other

LADIS / March 2007 Highly-concurrent data structures

24

‘ Priority Queue

= Insert operation is quite simple
= New items are assigned a temporary color

<<l <

= Remove from the ends is similar to Insert
a Locks three items, one of them an anchor

\ 4
4

A
A

&

LADIS / March 2007 Highly-concurrent data structures 25

Full-Fledged Doubly-Linked List

Remove from the middle is more complicated
o Need to lock three list items
o Possibly two with same color

A chain of Remove operations may lead to a long
delay chain in a symmetric situation

LADIS / March 2007 Highly-concurrent data structures 26

‘ Doubly-Linked List: Remove

¢ Use DCAS to lock equally colored nodes

> e I
«—— «— —

&

LADIS / March 2007 Highly-concurrent data structures

27

Recap

Explicitly think about conflict resolution and locking order

o Simplifies the design & correctness proofs
while providing low interference

o ldeas from / for fine-grained locking & resource allocation
Failure locality [Choi, Singh]
Concurrency control

Our local STM incorporates contention management

o More information about transactions’ status & outlook

LADIS / March 2007 Highly-concurrent data structures 28

Next...

Making it really work

Q

Q

Memory management
Special treatment for read-only items (read set)

Other data structures
Our results indicate the usefulness of DCAS

Q
Q

Q

Q

Q

Provides a significant boost from CAS

Support in hardware? Motorola 680x0, IBM S/370 ...

Hand-crafted software implementations,
further improving on [Attiya & Dagan]

Other implementations? [Fich, Luchangco, Moir, Shavit]
Proving inherent lower bounds

Verification...

LADIS / March 2007 Highly-concurrent data structures

29

Thank you

Questions?

