
��������	
��

�
��

�������
����
��

Hagit Attiya and Eshcar Hillel
Computer Science Department
Technion

����������
������� ��������	
��

�
���������
����
�� �

����� !�
!��"

� What are highly-concurrent data structures
and why we care about them

� The concurrency of existing implementation
techniques

� Two ideas for increasing concurrency:
� Conflict management � Transactional memory
� Locking order � Doubly-linked list

����������
������� ��������	
��

�
���������
����
�� �

��������#���
�� $�
���	
�

A data structure is a
collection of items

An operation accesses a
data set
not necessarily a pair

A collection of operations
induces a conflict graph
� Nodes represent items
� Edges connect items of

the same operation

����������
������� ��������	
��

�
���������
����
�� �

�$������%�����	
��&��"��
� $�
���	
�

� Disjoint access
� Non adjacent edges
� Distance is infinite

� Overlapping operations
� Adjacent edges
� Distance is 0

� Chains of operations
� Paths
� Distance is length of path

(in the example, 2)

����������
������� ��������	
��

�
���������
����
�� �

�
��
'�
�
���&��"��
� $�
���	
�

� Disjoint access
� Overlapping operations
� Non-overlapping

operations

Provides more concurrency
& yields better throughput

no interference

Why
interfere?

should not
interfere

Interference

inevitable

����������
������� ��������	
��

�
���������
����
�� �

�����
�
��(
��
��
'�
�
���)�	������*

�� ������ �		
�����
����������� ��
����

Distance in the conflict graph
between overlapping operations
that interfere

� d-local step complexity:
Only operations at distance � d
delay each other

� d-local contention:
Only operations at distance � d
access the same location

����������
������� ��������	
��

�
���������
����
�� �

����� !�
!��"

� What are highly-concurrent data structures
and why we care about them

� The concurrency of existing implementation
techniques

� Two ideas for increasing concurrency:
� Conflict management � Transactional memory
� Locking order � Doubly-linked list

����������
������� ��������	
��

�
���������
����
�� �

+�
������	���
�

� It is easy to implement concurrent data structures
if an arbitrary number of data items can be modified
atomically

� Simulate with single-item Compare & Swap (CAS):
� Acquire virtual locks on nodes in the data set

� Perhaps in some order

� Handle conflicts with blocking operations (holding a
required data item)

����������
������� ��������	
��

�
���������
����
�� �

��(
&�	���
���#$��#�
����	

�� �	����� �
��
���	
�
������
	����

� Acquire locks by increasing addresses
� Guarantees progress (the implementation is nonblocking)

� Help the blocking operation to complete (recursively)
� May result in long helping chains

� n-local step complexity
� n-local contention

����������
������� ��������	
��

�
���������
����
�� 	

%�����
���	
��
��	

�� �
�
���� ��
����

� Release locks when the operation is blocked
� Help an immediate neighbor (only) & retry…
� Short helping chains

� O(1)-local contention
� Long delay chains

� n-local step complexity

����������
������� ��������	
��

�
���������
����
�� 		

�	�	
�,�����+�
������	���
��),�
�
�*

�� ��
�
���
�
��

� Operations on two data items (e.g., DCAS)
� Colors define the locking order

� Inspired by the left-right dinning philosophers algorithm �������

� Color the items when the operation starts
� Non-trivial… � �����!
���
��

� Bound the length of delay chains
� (log*n)-local contention and step complexity
� Due to the coloring stage

<<

����������
������� ��������	
��

�
���������
����
�� 	�

�� ������ �		
�����
����������� ��
����

� Implements operations on k items, for a fixed k
� Based on the memory addresses, the conflict graph

is decomposed into trees & items are legally colored
�" �����	��������
���� �
�����

� Need to have the data set from the start
� Recursive, with A&D at the basis and in each step
� Even more complicated
� (k+log*n)-local contention and step complexity

�	�	
�,�����+�
������	���
��)-�.����*

����������
������� ��������	
��

�
���������
����
�� 	�

����� !�
!��"

� What are highly-concurrent data structures
and why we care about them

� The concurrency of existing implementation
techniques

� Two ideas for increasing concurrency:
� Conflict management � Transactional memory
� Locking order � Doubly-linked list

����������
������� ��������	
��

�
���������
����
�� 	�

�
�
�����	
�����#	
�

� Software transactional memory (STM)
allows to specify a transaction,
accessing an arbitrary data set,
as if executed atomically
� Static (data set is declared at invocation) vs.

dynamic (data set is provided one-by-one)

� Alleged to be a silver bullet for
concurrent programming

����������
������� ��������	
��

�
���������
����
�� 	�

�	�������	'�/
	"
�����

� Known STMs have O(n)-local step complexity
� Some also O(n)-local contention

� AMTT can be considered as static STM for
fixed-size data sets
� (k+log*n)-local contention and step complexity
� Recursive and restricted

����������
������� ��������	
��

�
���������
����
�� 	�

��������	
��

�
����

We concentrate on handling conflicts
between operations contending
for a data item
� Wait for the other operation
� Help the other operation
� Rollback the other operation

Acquire “locks” in arbitrary order
� No need to know the data set

(or its size) in advance
� No pre-computation

����������
������� ��������	
��

�
���������
����
�� 	�

�	
'����%��	����	
0��	"1

Conflict handling depends on the
operations’ progress so-far

More advanced operation gets
the item

1. How to gauge progress?
2. What to do on a tie?

����������
������� ��������	
��

�
���������
����
�� 	�

2�	’� �	
����!�
���1

The operation that locked more
data items is more advanced

� Locality depends on data set size
If a less advanced operation

needs an item, then
� help the conflicting operation or
� wait (blocking in a limited radius)

If a more advanced operation
needs an item, then

� rollback the conflicting operation
until it releases the item

����������
������� ��������	
��

�
���������
����
�� 	�

�	�������3�2�����&	�������1

When both operations locked
the same number of items

Each operation has a descriptor,
holding information about it
and a lock

The operations use DCAS to
race for locking the two
operation descriptors

Winner calls the shots…
There’s (a lot) more…

22

����������
������� ��������	
��

�
���������
����
�� �

����� !�
!��"

� What are highly-concurrent data structures
and why we care about them

� The concurrency of existing implementation
techniques

� Two ideas for increasing concurrency:
� Conflict management � Transactional memory
� Locking order � Doubly-linked list

����������
������� ��������	
��

�
���������
����
�� �	

�$���'����������
����
��

� Can be viewed as transactional memory
� Our STM is highly-concurrent…

� Relies on DCAS

� But has high overhead

� Or handled by specialized algorithms
� Ad-hoc and very delicate
� Verification is an issue
� Several wrong solutions...

����������
������� ��������	
��

�
���������
����
�� ��

����	#�4���+�
������	���
�

Instead of devising ad-hoc solutions,
design algorithms in a systematic manner…

�Lock the items that have to be changed &
apply a sequential implementation on these items

�Lock items by colors to increase concurrency
� Need to re-color at the start of every operation

� But in a specific data structure
� We manage a data structure since its infancy
� The data sets of operations are predictable

� unlike babies

����������
������� ��������	
��

�
���������
����
�� ��

�$���'������3��	�&�����
���������

� An important special case underlying many
distributed data structures
� E.g., priority queue is used as job queue

� Insert and Remove operations
� Sometimes only at the ends

(priority queues / deques)
� The data set is an item and its left / right

neighbors (or left / right anchor)

����������
������� ��������	
��

�
���������
����
�� ��

,������
��	�	
�
��'	
���
���������

�Always maintain the list items legally colored
� Adjacent items have different colors
� Adjust colors when inserting or removing items
� No need to color from scratch in each operation

� No cost for coloring

� Constant locality
� Esp., operations that access disjoint data sets do

not delay each other

����������
������� ��������	
��

�
���������
����
�� ��

new
item

5
�	
����6����

� Insert operation is quite simple
� New items are assigned a temporary color

� Remove from the ends is similar to Insert
� Locks three items, one of them an anchor

< < <

����������
������� ��������	
��

�
���������
����
�� ��

-����-��������	�&�����
�������

� Remove from the middle is more complicated
� Need to lock three list items
� Possibly two with same color

� A chain of Remove operations may lead to a long
delay chain in a symmetric situation

����������
������� ��������	
��

�
���������
����
�� ��

�	�&�����
��������3�%�#	!�

� Use DCAS to lock equally colored nodes

����������
������� ��������	
��

�
���������
����
�� ��

%���$

� Explicitly think about conflict resolution and locking order
� Simplifies the design & correctness proofs

while providing low interference
� Ideas from / for fine-grained locking & resource allocation

� Failure locality � ��
���
����
� Concurrency control

� Our local STM incorporates contention management
� More information about transactions’ status & outlook

����������
������� ��������	
��

�
���������
����
�� ��

(�.�…
� Making it really work

� Memory management
� Special treatment for read-only items (read set)

� Other data structures
� Our results indicate the usefulness of DCAS

� Provides a significant boost from CAS
� Support in hardware? Motorola 680x0, IBM S/370 …
� Hand-crafted software implementations,

further improving on �� ��
�
�# ��
�
��
� Other implementations? �$
��������
������� �
	��� �
�
��

� Proving inherent lower bounds

� Verification…

���
���	�

6�����	
�1

