3-Valued Abstraction-Refinement

Sharon Shoham

Academic College of Tel-Aviv Yaffo
Model Checking

An efficient procedure that receives:
- A finite-state model describing a system
- A temporal logic formula describing a property

It returns
yes, if the system has the property
no + Counterexample, otherwise

[EC81,QS82]
Model Checking

- Emerging as an industrial standard tool for verification of \textit{hardware} designs: Intel, IBM, Cadence, ...

- Recently applied successfully also for \textit{software} verification: SLAM (Microsoft), Java PathFinder and SPIN (NASA), BLAST (EPFL), CBMC (Oxford),...
Model of a System

Kripke structure / transition system

Notation: \(M = (\mathcal{AP}, S, s_0, R, L) \)

- States
- Initial state
- Transitions \(\subseteq S \times S \)
- Labeling \(S \rightarrow 2^{\text{Lit}} \)

Labeled by atomic propositions \(\mathcal{AP} \)
(critical section, variable value...)

- \(a, b \)
- \(a, c \)
- \(b, c \)
- \(b \)
- \(a, c \)
- \(a, b \)
- \(c \)
Temporal Logics

Express properties of event orderings in time

• **Linear Time**
 - Every moment has a unique successor
 - Infinite sequences (words)
 - Linear Time Temporal Logic (LTL)

• **Branching Time**
 - Every moment has several successors
 - Infinite tree
 - Computation Tree Logic (CTL), CTL*, μ-calculus
Propositional Temporal Logic

AP - a set of atomic propositions

Temporal operators:

Xp
Gp
Fp
pUq

Path quantifiers: A for all paths
E there exists a path
LTL / CTL / CTL*

LTL - of the form $A\psi$
\[\psi\] - path formula, contains no path quantifiers
- interpreted over infinite computation paths

CTL - path quantifiers and temporal operators appear in pairs: AG, AU, AF, AX, EG, EU, EF, EX
- interpreted over infinite computation trees

CTL - Allows any combination of temporal operators and path quantifiers. Includes both LTL and CTL
ACTL / ACTL*

The universal fragments of the logics, with only universal path quantifiers

- Negation is allowed only on atomic propositions
Main Limitation of Model Checking

The state explosion problem:

Model checking is efficient w.r.t. to the state space of the model. But...

The number of states in the system model grows exponentially with

- the number of variables
- the number of components in the system
"Solutions" to the State Explosion Problem

Symbolic model checking:
The model is represented symbolically
• BDD-based model checking
• SAT-based Bounded/ Unbounded model checking

Small models replace the full, concrete model:
• Abstraction
• Compositional verification
• Partial order reduction
• Symmetry
Outline

• **Background:**
 - Model Checking
 - Abstraction
 - CEX guided abstraction-refinement (CEGAR)
• **3-Valued Abstraction Refinement (TVAR)**
• **Example:** TVAR for CTL
• **Investigation of abstract models used in TVAR**
 - Monotonicity of Refinement
 - Completeness
 - Precision
 - Efficiency
Abstraction-Refinement

- **Abstraction**: removes or simplifies details that are irrelevant to the property under consideration

 Can reduce the number of states
 - from large to small
 - from infinite to finite

- **Refinement** might be needed
Widely used Abstractions

- **Localization reduction / invisible variables**: each variable either keeps its concrete behavior or is fully abstracted (has free behavior) \[\text{[Kurshan94]}\]
 - Initially: unabstracted variables are those appearing in the checked property

- **Predicate abstraction**: concrete states are grouped together according to the set of predicates they satisfy \[\text{[GS97, SS99]}\]
 - Initially: predicates are extracted from the program’s control flow and the checked property
Abstraction Example

Abstract states

Concrete states

$x \leq y$ $\neg(x \leq y)$

$x=0$ $x=1$ $x=2$ $x=3$ $x=4$...

$y=2$ $y=2$ $y=2$ $y=2$ $y=2$...
Abstraction Example

- Abstraction \((S_A, \gamma)\):
 - Finite set of abstract states \(S_A\)
 - Abstraction mapping \(\gamma : S_A \rightarrow 2^{S_c}\)
 - not necessarily disjoint sets

\[
\begin{align*}
\gamma(x) & = \text{example} \\
\gamma(y) & = \text{example}
\end{align*}
\]
Abstraction Example

• Abstraction \((S_A, \gamma)\):
 - Finite set of abstract states \(S_A\)
 - Abstraction mapping \(\gamma : S_A \to 2^{S_c}\) not necessarily disjoint sets

• Concrete Kripke structure \(M_C = (S_C, R_C, L_C)\)
 \(\text{Abstract model over } S_A\): labeling, transitions
 Need to be \textbf{conservative}
Why Conservative?

Goal:
- Model check M_A instead of M_C
- Deduce result over M_C from result over M_A

What can we deduce?
- true ?
- false ?
- Both ?

For which properties?

Depends on abstract model and abstract semantics
2-valued CounterExample-Guided Abstraction Refinement (CEGAR)

For ACTL*

[CGJLV00, JACM2003]
Abstraction preserving ACTL/ACTL*

Existential Abstraction:

every concrete transition is represented by an abstract transition

If \(\exists s_c \in \gamma(s_a) \ \exists s'_c \in \gamma(s'_a) \) s.t. \((s_c, s'_c) \in R_C\) then \((s_a, s'_a) \in R_A\)

Formally: simulation

The abstract model is an over-approximation of the concrete model:
- The abstract model has more behaviors
- no concrete behavior is lost
Simulation Relation

\[H \subseteq S_C \times S_A \] is a simulation relation from \(M_C \) to \(M_A \) if whenever \((s_c, s_a) \in H:\)

- \(L_C(s_c) \supseteq L_A(s_a) \)
- If \((s_c, s'_c) \in R_C\) for some \(s'_c \), then there exists \(s'_a \) s.t. \((s_a, s'_a) \in R_A\) and \((s'_c, s'_a) \in H\)

If there exists a simulation relation obeying the initial states, then \(M_C \preceq_{\text{sim}} M_A \)
Existential Abstraction

• Abstract model is also a Kripke structure
• Same semantics is used for abstract and concrete models

→ Same model checking algorithms

Abstract model checking result is \textbf{true} or \textbf{false} (2-valued)

But... what can we \textbf{deduce}?
Logic Preservation Theorem

Theorem. Let $M_C \leq_{\text{sim}} M_A$. Then:

- Every ACTL/ACTL* property **true** in the abstract model is also **true** in the concrete model:
 \[M_A \models \varphi \Rightarrow M_C \models \varphi \]

However, the reverse may not be valid:

- If $M_A \not\models \varphi$, need to check further
 - Check if abstract counterexample is spurious
CEX Guided Abstraction Refinement

- Generate initial abstraction
- Model check
- Generate counterexample T_A
- Check spurious counterexample

Refinement: based on cex

$M_A \models \varphi \in ACTL/ACTL^*$

$M_A \models \varphi$

$M_A \not\models \varphi$

T_A is spurious

T_A is not spurious

Stop
Three-Valued Abstraction Refinement (TVAR) for Full CTL*

[SG03, GLLS05]
2-valued Approach is not Applicable

• Over-approximation (simulation) of the concrete model is not sound for verification of existential properties:

\[M_A \models \text{E}\varphi \text{ does not imply } M_C \models \text{E}\varphi \]

⇒ More complex abstract models (and relations) are needed to ensure logic preservation
Abstract Models for CTL*

Branching-time temporal logics combining existential (E) and universal (A) quantifiers:

⇒ two transition relations [LT88]

- \textbf{R_{may}}: an \textit{over-approximation}
- \textbf{R_{must}}: an \textit{under-approximation}

\textbf{R_{may}} used to verify \(A_{\psi} \) ... and falsify \(E_{\psi} \)
\textbf{R_{must}} used to verify \(E_{\psi} \) ... and falsify \(A_{\psi} \)
Logic Preservation for CTL*

If M_A is an abstraction of M_C then for every CTL^* formula φ,

$$M_A \models \varphi \Rightarrow M_C \models \varphi$$

$$M_A \not\models \varphi \Rightarrow M_C \not\models \varphi$$

• But sometimes $[M_A \models \varphi] = \text{don’t know}$

⇒ 3-Valued Semantics

3 possible values: True, False, \perp (indefinite)
Refinement

- Refinement is needed when result is \(\perp \)

Traditional abstraction-refinement for universal properties not applicable:
- Refinement needed when result is false
- Based on a counterexample

Three-Valued Abstraction-Refinement (TVAR)
The TVAR Methodology

\[M \text{ and } \varphi \in \text{CTL/CTL}^* \]

generate initial abstraction

\[M_A \]

model check

\[[M_A \models^3 \varphi] = t t, f f \]

find and analyze failure cause

Refinement: Based on failure

stop

\[[M_A \models^3 \varphi] = \bot \]
Main Components

1. **Abstract Models:**
 - What formalism is suitable?
 - How to construct an abstract model in a conservative way?

2. **Model Checking:**
 - How to evaluate branching-time formulas over abstract models based on the 3-valued semantics?

3. **Refinement:**
 - How to refine the abstract model?
TVAR for CTL using Kripke Modal Transition Systems

[SG03]
Abstract Models

Kripke Modal Transition System (KMTS) [HJS01]

• $M = (AP, S, s^0, R_{must}, R_{may}, L)$

 - $R_{must} \subseteq S \times S$: an under-approximation
 - $R_{may} \subseteq S \times S$: an over-approximation
 - $R_{must} \subseteq R_{may}$

For simplicity. In MixTS, no such requirement
Labeling function:

- **L: S → 2^{Literals}**

- Literals = \(AP \cup \{ \neg p \mid p \in AP \} \)

- **At most** one of \(p \) and \(\neg p \) is in \(L(s) \).
 - Concrete: exactly one of \(p \) and \(\neg p \) is in \(L(s) \).
 - KMTS: possibly none of them is in \(L(s) \), meaning that the value of \(p \) in \(s \) is **unknown**
3-Valued Semantics [BG99]

$$[[\text{lit}]](s) = \text{tt} \text{ if } \text{lit} \in L_A(s), \ \text{ff} \text{ if } \neg\text{lit} \in L_A(s), \perp \text{ o.w.}$$

$$[[\text{AX} \psi]](s) = \begin{cases}
\text{tt} \text{ if } \text{forall } s', \text{ if } (s, s') \in R_{\text{may}}, \\
\text{then } [[\psi]](s') = \text{tt} & \\
\text{ff} \text{ if } \text{exists } s' \text{ s.t. } (s, s') \in R_{\text{must}} \\
\text{and } [[\psi]](s') = \text{ff} & \\
\perp \text{ otherwise}
\end{cases}$$

$$[[\text{EX} \psi]](s) - \text{ dual}$$

“all succ. satisfy ψ”

“exists succ. satisfying ψ”
Construction of Abstract Model

Labeling of abstract states

\[\forall s_c \in \gamma(s_a) \; \text{lit} \in L_c(s_c) \; \Leftrightarrow \; \text{lit} \in L_A(s_a) \]
Construction of Abstract Model

must and may transitions:

must: under approximation

\[
\forall s_c \in \gamma(s_a) \exists s_c' \in \gamma(s_{a'}) \text{ s.t. } (s_c, s_c') \in R_C \iff (s_a, s_{a'}) \in R_{\text{must}}
\]
Construction of Abstract Model

must and may transitions:

\[\exists s_c \in \gamma(s_a) \exists s'_c \in \gamma(s_a') \text{ s.t. } (s_c, s'_c) \in R_C \leftrightarrow (s_a, s_a') \in R_{\text{may}} \]
Mixed Simulation

\(H \subseteq S_C \times S_A \) is a mixed simulation relation from Kripke structure \(M_C \) to KMTS \(M_A \) if whenever \((s_c, s_a) \in H:\)

- \(L_C(s_c) \supseteq L_A(s_a) \)
- If \((s_c, s_c') \in R_C\), then there is \(s_a' \) s.t. \((s_a, s_a') \in R_{\text{may}}\) and \((s_c', s_a') \in H\)
- If \((s_a, s_a') \in R_{\text{must}}\), then there is \(s_c' \) s.t. \((s_c, s_c') \in R_C\) and \((s_c', s_a') \in H\)

If there exists a mixed simulation relation obeying the initial states, then \(M_C \leq_{\text{mix}} M_A \).
Logic Preservation

Theorem.

Let $M_C \leq_{\text{mix}} M_A$. Then:

For every CTL^\star formula φ,

$M_A \models \varphi \Rightarrow M_C \models \varphi$

$M_A \not\models \varphi \Rightarrow M_C \not\models \varphi$

But if $[M_A \models \varphi] = \bot$, the value in M_C is unknown.
3-Valued Model Checking Example

\[\varphi = AXp \land EXq \]

\[M: \]
\[s \rightarrow p, \neg q \rightarrow p, q \rightarrow t \]
3-Valued Model Checking Example

\((s, AXp \land EXq) \)

\(\varphi = AXp \land EXq \)

state of the model

formula that we want to evaluate in \(s_0 \)

MC graph
3-Valued Model Checking Example

\[\varphi = \text{AX}p \land \text{EX}q \]

\(M: \)

- \(s \) \(\rightarrow \) \(p, \neg q \)
- \(s \) \(\rightarrow \) \(p, q \)
- \(t \)

MC graph
Coloring the graph

\(\varphi = AXp \land EXq\)

Model's transitions need to consider:
- may vs. must

Terminal nodes: based on states labeling
\(\land, \lor, AX, EX\): according to sons, based on semantics
3-Valued Model Checking Results

• $\top\top$ and $\bot\bot$ are definite: hold in the concrete model as well.

• \bot is indefinite

\Rightarrow Refinement is needed.
Refinement

- done by splitting abstract states (as for the case of 2-values)
Refinement

• Uses the colored MC graph
• Find a **failure node** n_f:
 - a node colored \perp whereas none of its sons was colored \perp at the time it got colored.
 - the point where certainty was lost
• **purpose**: change the \perp color of n_f.
Example

\[\varphi = \text{AX}p \land \text{EX}q \]

\[M: p, \lnot q \rightarrow p, q \]

reason for failure: may-son
- not enough to verify
- prevents refutation
Failure Reason

• **Failure reason** is either:
 - A **may-edge** which is **not** a **must-edge**.
 - A **⊥-terminal node**

• **Back in the model:**
 - Either a transition \((s, s') \in R_{may} \setminus R_{must}\):
 ➔ Split \(s\) to get a must-transition or none.
Failure Reason

- **Failure reason** is either:
 - A *may-edge* which is not a *must-edge*.
 - A \bot-terminal node.

- **Back in the model:**
 - Either a transition $(s, s') \in \text{R}_{\text{may}} \setminus \text{R}_{\text{must}}$:
 - Split s to get a *must*-transition or none.
Failure Reason

• **Failure reason** is either:
 - A *may-edge* which is *not* a *must-edge*.
 - A \(\bot\)-terminal node

• **Back in the model:**
 - Either a transition \((s, s') \in R_{\text{may}} \setminus R_{\text{must}}\):
 \[\Rightarrow\] Split \(s\) to get a must-transition or none.
 - Or \((s,lit)\) where \(lit \notin L(s)\), \(\neg lit \notin L(s)\)
 \[\Rightarrow\] Split \(s\) according to \(lit\).
Failure Reason

- **Failure reason** is either:
 - A *may-edge* which is not a *must-edge*.
 - A \(\bot\)-terminal node

- **Back in the model:**
 - Either a transition \((s, s') \in R_{\text{may}} \setminus R_{\text{must}}:\)
 - Split \(s\) to get a must-transition or none.
 - Or \((s, \text{lit})\) where \(\text{lit} \notin L(s), \neg \text{lit} \notin L(s)\)
 - Split \(s\) according to \(\text{lit}\).
Split

- Refinement is reduced to separating sets of concrete states.
 - done by known techniques [CGJLV00, CGKS02]

⇒ Refined abstraction mapping.

- Build refined abstract model and refined MC-graph accordingly.
Example (cont.)

\[\phi = \Box p \land \Diamond q \]

\[M': \]

- \[s_1 \quad p, \neg q \rightarrow p, q \]
- \[s_2 \quad p, \neg q \rightarrow p, q \]

\[\varphi = \Box p \land \Diamond q \]
Example (cont.)

\[\varphi = AXp \land EXq \]

\[M': s_1 p, \neg q \rightarrow p, q \]

\[s_2 p, \neg q \rightarrow p, q \]

Diagram:

- \((s_1, AXp)\) with \((s_2, p)\) and \((s_2, q)\)
- \((s_1, EXq)\) with \((t, p)\) and \((t, q)\)
Incremental Abstraction-Refinement

No reason to split states for which MC results are definite during refinement.

- After each iteration remember the nodes colored by definite colors.
- Prune the refined MC graph in sub-nodes of remembered nodes.
 [(s_a, \varphi) is a sub-node of (s_a', \varphi') if \varphi=\varphi' and \gamma(s_a)\subseteq\gamma'(s_a')]
- Color such nodes by their previous colors.
Example
Example (cont.)

Refined MC-graph
Example (cont.)
Example (cont.)

Refined MC-graph
Are KMTSs good enough for TVAR?
Investigation of Abstract Models

- Monotonicity of Refinement
- Precision
- Completeness
- Efficiency
(1) Monotonicity of Refinement

Is a refined abstract model at least as precise as the unrefined one?
Example

\(P :: \)

input \(x > 0 \)

\(pc=1: \) if \(x > 5 \) then \(x := x + 1 \) else \(x := x + 2 \)

\(pc=2: \) while true do

\(\quad \text{if odd}(x) \text{ then } x := -1 \text{ else } x := x + 1 \)

\(\varphi = EF (x \leq 0) \)
An Abstract Model M

$P ::$
input $x > 0$
$pc=1$: if $x>5$ then $x := x+1$
else $x := x+2$
$pc=2$: while true do
 if odd(x) then $x := -1$
else $x := x+1$

$[EF (x \leq 0)] (M) = \bot$
The abstract model M

A refinement M' of M

P ::
input x > 0
pc=1: if x>5 then x := x+1
 else x := x+2
pc=2: while true do
 if odd(x) then x := -1
 else x := x+1

The abstract model M

A refinement M' of M
The abstract model M:

$\mathsf{EX} (x > 0) \models (M) = \top \top$

A refinement M' of M:

$M' \not\leq_{\mathsf{CTL}} M$

$\mathsf{EX} (x > 0) \models (M') = \bot$
Problem

• When splitting states during refinement we may lose must transitions

• Existential formulas that were true before may become indefinite! (also universal formulas that were false)

• Thus, the refined model is not necessarily more precise

→ refinement is not monotonic
Goal: define a refinement that **adds** under-approximated **must** transitions

[current refinements **remove** over-approximated **may** transitions]

Result: refined model will be **more precise**, i.e. more formulas will be definite (tt or ff) in it:

Monotonic Refinement

Notation: $M' \leq_{\text{CTL}} M$: M' is more precise than M
Refinement M'' of M, according to Godefroid et. al.

$M'' \leq_{\text{CTL}} M$
(2) Precision

Given a state abstraction \((S_A, \gamma)\)

• “How many” formulas can be verified or falsified on the abstract model?
Refinement M'' of M, according to Godefroid et al.

$$\text{Refinement } M'' \text{ of } M, \text{ according to Godefroid et. al.}$$

$$M'' \leq_{\text{CTL}} M$$

$$[\text{EF } (x \leq 0)] (M'') = \bot$$
Another Solution \[SG'04\]

Use **hyper-transitions** as must transitions

Hyper-transition from a state \(s \in S \) is

- \((s, A)\) where and \(A \subseteq S \) is nonempty
Generalized KMTS (GTS)

\[M = (S, S_0, R_{\text{may}}, R_{\text{must}}, L) \]

- \(S, S_0, R_{\text{may}}, L \) as before
- \(R_{\text{must}} \subseteq S \times 2^S \)
Constructing an Abstract GTS

Given M_C, S_A, and $\gamma : S_A \rightarrow 2^{Sc}$

- $(s_a, A) \in R$ must only if $\forall \exists \exists$-condition holds:

$$\forall s_c \in \gamma(s_a) \exists s'_a \in A \exists s'_c \in \gamma(s'_a) : (s_c, s'_c) \in R_c$$

every state in $\gamma(s_a)$ has a corresponding transition
Given M_C, S_A, and γ: $S_A \rightarrow 2Sc$

\[
\{s_a, s'_a\} \in R \text{ must only if } \forall \exists - \text{condition holds:}
\]

\[
\forall s_c \in \gamma(s_a) \exists s'_c \in \gamma(s'_a) : (s_c, s'_c) \in R_c
\]

- $(s_a, A) \in R \text{ must only if } \forall \exists \exists - \text{condition holds:}$

\[
\forall s_c \in \gamma(s_a) \exists s'_a \in A \exists s'_c \in \gamma(s'_a) : (s_c, s'_c) \in R_c
\]
3-Valued Semantics over GTS

\[
[[\text{lit}]](s) = \text{tt} \text{ if } \text{lit} \in L_A(s), \text{ ff if } \neg\text{lit} \in L_A(s), \bot \text{ o.w.}
\]

\[
[[\text{AX}\psi]](s) = \begin{cases}
\text{tt if } \forall s', \text{ if } (s, s') \in R_{\text{may}}, \\
\text{then } [[\psi]](s') = \text{tt}
\end{cases}
\]

\[
[[\text{EX}\psi]](s) = \begin{cases}
\text{ff if exists } A \subseteq S_A \text{ s.t. } (s, A) \in R_{\text{must}} \\
\text{and } [[\psi]](s') = \text{ff for all } s' \in A
\end{cases}
\]

\[
\bot \text{ otherwise}
\]

"all succ. satisfy } \psi"

"exists succ. satisfying } \psi"
Must Hyper-transition (AEA)

Every concrete state in $\gamma(s_{00})$ has a transition to a concrete state in either $\gamma(s_{10})$ or $\gamma(s_{11})$

- **s_{00}**
 - $pc=1$
 - $x > 0$
 - $\text{odd}(x)$

- **s_{10}**
 - $pc=2$
 - $x > 0$
 - $\text{odd}(x)$

- **s_{11}**
 - $pc=2$
 - $x > 0$
 - $\neg\text{odd}(x)$

- **$pc=1$:** if $x > 5$ then $x := x + 1$
 - else $x := x + 2$

- **$Pc=2$:** ...
Generalized KMTS M_G

$M_G \leq_{CTL} M'' \leq_{CTL} M$ and $[\text{EF } (x \leq 0)](M_G) = \top$
Monotonicity Theorem:

Let M_A and M'_A be two abstract GTSs of M_c such that

- M'_A is obtained from M_A by splitting states
- Both M_A and M'_A are exact

Then M'_A is more precise than M_A
To complete the picture...

- Extension of the game-based 3-Valued Model Checking and Failure Analysis to GTSs
Investigation of Abstract Models

• Monotonicity of Refinement
• Precision
• Completeness
• Efficiency
(3) Completeness

• Suppose $M_C \models \varphi$

• Does there exist a finite abstraction (S_A, γ) such that $[M_A \models \varphi] = \top$?
Monotonicity vs. Completeness vs. Precision

• **Monotonicity of refinement:**
 Given two abstractions, where one is a split of the other, is refined abstraction more precise than unrefined one?

• **Precision:**
 How many formulas can be verified on the abstract model, with a given abstraction \((S_A, \gamma)\)?

• **Completeness:**
 Does there exist an abstraction \((S_A, \gamma)\) for which we can verify the formula on the abstract model?
Are KMTSs complete?

• No fairness constraints
 ➔ incomplete for *liveness* properties

What about *Safety*? (no least fixpoint)

No [Dams & Namjoshi, 2004]

But GTSs are! [de Alfaro et al, 2004]
Investigation of Abstract Models

- Monotonicity of Refinement
- Precision
- Completeness
- Efficiency
(4) Efficiency

Cost:

- Size of the abstract model w.r.t. $|S_A|$
- Efficiency of Model Checking
Drawback of GTS

The number of must hyper transitions might be exponential in the number of abstract states \(|S_A| \)

Optimization:

including only \((s, A) \) such that \(A \) is minimal

• Does not change precision of the abstract model

But, might still be too large
In Practice

- Not all hyper-transitions are relevant for specific model checking problem

\[\lbrack \lbrack E X p \rbrack \rbrack (s_0) = ? \]

"exists a successor that satisfies \(p \)"

\(\Rightarrow \) Need to find designated hyper-transitions
Alternative Approach [SG06]

- Compute hyper-transitions during Model Checking, by need

⇒ Game-based Model Checking
Our Algorithm

- Compute **over approximation** of concrete transition relation

 \[(s_a, s'_a) \in R_A \text{ iff } \exists s_c \in \gamma(s_a) \exists s'_c \in \gamma(s'_a) : (s_c, s'_c) \in R_c\]

 All reachable states are considered

- Construct **MC graph** based on \(R_A \)
- Apply bottom up **coloring**
During Coloring

\[s \vdash \text{EX}\psi \]

\[s \vdash \psi \]
\[s \vdash \psi \]
\[s \vdash \psi \]
\[s \vdash \psi \]
\[s \vdash \psi \]
\[s \vdash \psi \]
\[s \vdash \psi \]
\[s \vdash \psi \]
\[s \vdash \psi \]
\[s \vdash \psi \]
\[s \vdash \psi \]
\[s \vdash \psi \]
\[s \vdash \psi \]

\(A_{tt} \): all states in which the value of \(\psi \) is \(tt \)

\((s, A_{tt})\) meets \(\forall \exists \exists \)-condition [must]? yes: \([[\text{EX}\psi]](s_0) = tt\)
During Coloring

\[s \vdash EX\psi \]

\[
\begin{array}{cccccccc}
S_1 \vdash \psi & S_2 \vdash \psi & S_3 \vdash \psi & S_4 \vdash \psi & S_3 \vdash \psi & S_3 \vdash \psi & \cdots & S_n \vdash \psi \\
tt & tt & ff & tt & ff & ff & tt \\
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \\
\end{array}
\]

\(A_{ff} \): all states in which the value of \(\psi \) is \(ff \)

\((s, A_{tt})\) meets \(\forall\exists\exists \)-condition [must]?

- yes: \([[EX\psi]](s_0) = tt \)

All may transitions reach \(A_{ff} \)?

- yes: \([[EX\psi]](s_0) = ff \)

otherwise: \([[EX\psi]](s_0) = \bot \)
Abstract Model Checking

• **Loops:** slight complication

In the paper [SG06]:
• Abstract MC for the alternation-free μ-calculus
• **Complexity:** $O(|S_A|^2 \times |\varphi|)$
• **In particular:** num of $\forall \exists \exists$ checks, num of hyper transitions

As precise as constructing the full GTS
Abstraction-Refinement

- If $[[\varphi]](s_0) = \bot$, apply refinement by splitting abstract states, as in [SG03]

- Refinement is monotonic:
 refined model is more precise, i.e. more μ-calculus formulas are definite (tt or ff) in it

än Abstraction-refinement loop
Summary

We presented the **TVAR** framework for 3-valued abstraction-refinement in model checking:

- **Properties preserved:**
 - CEGAR: truth of \textit{ACTL}^*
 - TVAR: both truth and falsity of $\textit{Full CTL}^*$

- **Refinement eliminates**
 - CEGAR: Counterexamples
 - TVAR: indefinite results (\bot)
Summary

The TVAR framework requires

1. Different abstract models (Rmust, Rmay)
 - Rmust is harder to compute, and problematic in terms of monotonicity, precision, completeness, and efficiency
 - KMTS, GTS, HTS

2. Adapted Model checking for new models:
 - 3-valued Coloring of MC-graph
Summary

The TVAR framework requires

3. Refinement eliminating indefinite results
 - Identify failure state and cause
 - Incremental abstraction-refinement (similar to lazy abstraction in 2-valued MC)

Gives benefits in preciseness and in the properties preserved