Variants of LTL Query Checking

Hana Chockler
IBM Research

Arie Gurfinkel
SEI

Ofer Strichman
Technion
Problem Formulation - General Query Checking

We have the design:

What is the property?

This is not as silly as you might think!
Problem: Model Understanding

Is it
“always(request -> eventually(grant))”
or
“always(request -> next(grant))”
or
“always((request AND not_busy) -> next(grant))”
or
“always(request -> next(grant AND busy))”
Or maybe something else?
Current mode of working:
Try properties one after another until you find the right ones

Usually, we are looking for the strongest properties that hold in the design

Very time-consuming and frustrating

Wouldn't it be nice if an automated process could find the right property for us?
Query Checking
was defined by W. Chan in 2000

Model Checking:

A mathematical model of the system M (an FSM):

Does M satisfy \(\varphi \)?

- no
- yes
- counter example

I only have a vague idea about the right property to check ...

the system is correct!
Query Checking was defined by W. Chan in 2000

Query Checking:

A mathematical model of the system M (an FSM):

A skeleton of a formal specification - basically a formula with placeholders

What is the right φ?

A strongest φ with a given skeleton that holds in M

I found the property!
Why this particular setting?

- A skeleton gives an idea about the kind of property the verification engineer has in mind.
- Usually, the skeleton is accompanied by the set of signals, which can be used to turn the skeleton into a property - so no uninteresting signals can appear.

- Model learning
- Model exploration
- Strongest invariant
Related Work

- Definition of query checking for CTL; a subset of CTL for which there is a single solution [Chan]
- Solving query checking with alternating automata [Bruns and Godefroid]
- Solving query checking with lattices [Gurfinkel, Chechik, and Devereux]

All these algorithms use some form of repeated model checking
Preliminaries:

Linear Temporal Logic (LTL)

- In addition to Boolean operators, has temporal operators: always, eventually, next, and until:
 - always(p AND q) - p AND q are true in all states
 - p until q - on each path, p holds until q holds

Buchi Automata

- Automata on infinite computations: accept if a path visits an accepting state an infinite number of times

\[p \land q \]

A accepts all paths on which p AND q are true in all states:

Systems as labeled state-transition graphs (FSM)

- Each state is labeled with atomic propositions (variables) that are true in this state; all states have outgoing transitions; computations are infinite paths on the graph.

- A system satisfies a property if all its computations satisfy this property.
Preliminaries:

Model Checking:

- Construct an automaton B for the negation of the property φ
- Build the product $M \times B$
- Check whether it is empty:
 - If it is empty, then $M \models \varphi$
 - If not, accepting paths are counterexamples

B is an automaton for the negation of “eventually($\neg p \lor \neg q$)”

$M \times B$ is empty

M satisfies the property
Our contribution: LTL Query Checking

- Problem formulation: Given an FSM (Kripke structure) M and an LTL query $\varphi[?]$, both over $\Sigma = 2^{AP}$, find a strongest propositional formula f such that $M \models \varphi[?] \leftarrow f$

A mathematical model of the system M (an FSM):

An LTL query $\varphi[?]$ - an LTL formula with placeholders

The set AP' of atomic propositions to be used to construct f

What is the right φ?

A strongest propositional f such that $M \models \varphi[?] \leftarrow f$

I found the property!
Why propositional f and why over AP'?

Usually, the type of the property is defined by its temporal operators; then, query checking finds a propositional f that fits - for example, “always(?)” can be used to find a strongest invariant

AP' is a subset of signals over which f is constructed

What is a “strongest“?

Option 1: f is stronger than g if $\text{models}(f) \subseteq \text{models}(g)$ (that is, $f \rightarrow g$)

Option 2: f is stronger than g if $|\text{models}(f)| < |\text{models}(g)|$

Option 3: f is stronger than g if $\varphi[f] \rightarrow \varphi[g]$
Our contribution: LTL Query Checking

♦ We present solutions for all definitions of strongest
♦ The most interesting one is to Option 2:
 ◊ f is stronger than g if |models(f)| < |models(g)|

The solution reduces the query checking problem to an optimization problem in Linear Integer Programming over binary variables (0-1-ILP), or, equivalently, a problem for a Pseudo-Boolean Solver (PBS)
Intuition: compute f such that the product of M with the automaton for the negation of $\varphi[f]$ is empty

Solution strategy:

- Let $\Sigma' = \Sigma \cup '?' \cup '¬?'$.
- **Construct** $P = M \times B_{\neg \varphi}$ over Σ'
 - In this product '?' and '¬?' are the same as 'true', i.e. they synchronize on everything.
- Let Π be the set of lasso-shaped accepting paths in P
- We will find the strongest f that eliminates all elements of Π.

essentially, we treat '?' as a wild card
Bird's-eye view of the solution - series of reductions

Problem 1: find a strongest f such that the product $M \times B$ is empty

Problem 2: find a minimum cutting set for a Buchi automaton

Problem 3: find a minimum cutting set for a finite automaton

To cut all accepting paths

0-1 ILP
From Problem 2 to Problem 3:

Problem 2: find a minimum cutting set for a Buchi automaton

Problem 3: find a minimum cutting set for a finite automaton

for safety properties, the Buchi automaton is already a finite automaton

- Buchi automaton B with the set of accepting states F of size k
- transitions from the i-th accepting state of B_0 to the copy B_i
- accepting states are here
Reducing the minimum cutting set of a finite automaton to a 0-1-ILP problem

- Each edge in the automaton has its labeling
- We only leave edges that exist in the automaton regardless of the value of '?' and edges that can exist depending on the value of '?'
- With each labeling with a positive occurrence of '?' we associate a positive propositional variable
- With each labeling with a negative occurrence of '?' we associate a negated propositional variable
- With each state we associate a propositional variable
- Constraints:
 - Initial states are reachable: for each \(s_0 \in S \), \(e_{s_0} \)
 - Accepting states are unreachable: for each \(f \in F \), \(\neg e_f \)
 - For each transition \(\langle s, l, v \rangle \), we have: \(e_s \land e_l \rightarrow e_v \)
- Objective: to minimize \(\Sigma e_l \)

Solution: \(f = \lor l \) for which \(e_l = 1 \)
Why is this correct?

- \(f \) can be represented as DNF where each term represents a full assignment
 - This corresponds to the truth table of \(f \).

- For \(\pi \in \Pi \), let
 - \(g(\pi^-) = \{\tau \mid \langle \tau, \neg ? \rangle \in \pi\} \)
 - \(g(\pi^+) = \{\tau \mid \langle \tau, ? \rangle \in \pi^+\} \) // sets of assignments

- \(f \) should contradict at least one edge in each path \(\pi \in \Pi \)
 - For \(\tau \in g(\pi^-) \), it is sufficient that \(f \models \tau \).
 - For \(\tau \in g(\pi^+) \), it is sufficient that \(f \nem \tau \).
Example

\(\varphi[?] = \text{eventually(always(?))} \)

\(\neg \varphi[?] = \text{always(eventually(\neg ?))} \)

M:

- **w_2:** \(p, \neg q \to \neg p, q \to p, \neg q \to \neg p, q \)

B:

- **s_0:** \(? \to ? \)
- **s_1:** \(? \to ? \)

Product automaton
0-1-ILP formulation for the example

Min $e_{-pq} + e_{p-q}$
subject to
1. $e_{-pq} \lor e_{p-q}$
2. $e_{-pq} \lor e_{p-q} \lor \neg e_{p-q}$
3. $e_{p-q} \lor e_{-pq}$
4. $e_{p-q} \lor e_{-pq} \lor \neg e_{-pq}$
5. $e_{-pq} \lor \neg e_{p-q}$
6. $e_{p-q} \lor \neg e_{-pq}$

Accepting path from the previous slide

Optimal solution $= e_{-pq} = e_{p-q} = 1$, hence $f = \neg pq \lor p \neg q = p \oplus q$

$\varphi[f] = \text{eventually(always}(p \oplus q))$
Complexity

Size of the product automaton (= of model checking):

\[O(|B|) = O(|M| \cdot 2^{|\varphi|}) \]

Solving 0-1-ILP is bound by exponent on the number of variables, which is double-exponential in \(\mathsf{AP}' \) - a small subset of variables that are taken into consideration when computing \(f \).

likely to be more efficient in practice
In the paper but not in the presentation:

- Option 1: f is stronger than g if $\text{models}(f) \subseteq \text{models}(g)$ (in other words, $f \Rightarrow g$)
- Option 3: f is stronger than g if $\varphi[f] \Rightarrow \varphi[g]$

solved using lattices

- Multiple placeholders - solved similarly using a 0-1-ILP
Summary:

♦ Motivation
♦ Definition of query checking
♦ Introducing query checking for LTL
♦ Automata-based algorithm for computing a strongest solution
♦ Complexity

Future work:

♦ More efficient algorithms
♦ Query checking with temporal placeholders
♦ Characterization of queries for which exactly one strongest solution exists
Questions?
Model Checking

Is the system correct?

A mathematical model of the system M (an FSM):

A formal specification ψ

Does M satisfy ψ?

no

yes

the system is correct!

counter example