A survey on Amir Pnueli’s work on
Temporal logic, proof rules and
Model Checking

Orna Grumberg
Technion
Haifa, Israel

Haifa Verification Conference, 2010
Program Verification

Given
• a (hardware or software) system and
• a formal specification

does the system satisfy the specification?

• For sequential programs, input-output specification is often sufficient

• For reactive systems, temporal specification is needed
Early works

- Needed to convince that temporal logic is suitable for program specification

- Decided which operators are needed
 - F and G
 - U and X

- Provided proof rules for verifying properties - deductive rules, non-automated

- Developed automated verification technique for the full logic
 - LTL model checking
Overview

- Temporal logic and its use for specifications
- Deductive verification methods
- LTL model checking
Temporal Logics

- **Temporal Logics**
 - Express properties of event orderings in time

- **Linear Time**
 - Every moment has a unique successor
 - Infinite sequences (words)
 - Linear Time Temporal Logic (LTL)

- **Branching Time**
 - Every moment has several successors
 - Infinite tree
 - Computation Tree Logic (CTL)
Early works

• In FOCS 1977, Pnueli introduced
 - linear-time temporal logic
 - promoted temporal logic as a specification language

• In POPL 1981, Pnueli, Ben-Ari and Manna introduced
 - branching-time temporal logic
Temporal logic

AP - a set of atomic formulas

Temporal operators:

- Gp
- Fp
- Xp
- pUq

Path quantifiers: A for all path

E there exists a path
Atomic formulas

First-ordered formulas defined over program variables

• Examples:
 - $x > 0$
 - $x = y + z$
 - $\exists y \ (x = 2y) \equiv \text{even}(x)$
Alternative notations

• $\Diamond \phi = F \phi$
• $\Box \phi = G \phi$
• $O \phi = X \phi$
When is temporal logic useful?

For specifying the behavior of reactive systems

- Non-terminating
- Respond to requests from the environment
Properties - examples

- Invariance, safety
 - Partial correctness
 \[(at_start \wedge (x > 0 \wedge y \geq 0)) \rightarrow G [at_halt \rightarrow z' = y/x] \]

 - Mutual exclusion
 \[G \rightarrow (CS1 \wedge CS2) \]

- Clean behavior, i.e., no division by zero

- Deadlock freedom
More properties

- **Non-starvation**
 \[G (\text{request} \rightarrow F \text{ granted}) \]

- **A resource will not be granted if not requested**
 \[(F \text{ grant}) \rightarrow (\neg \text{grant} \cup \text{request}) \]

- **Communication protocols**
 \[(\neg \text{receive-message}) \cup \text{send-message} \]
Properties (cont.)

- p_1 happens before p_2
 $\Pr(p_1, p_2) = (F p_2) \rightarrow (\neg p_2 \cup p_1)$

- Preserving order of events
 $\Pr(req_1, req_2) \rightarrow \Pr(grant_1, grant_2)$
Possible extensions of the logic

• Past and future operators
 - previously / next
 - since / until

• Real-time
Deductive methods

Proof rules for proving that a program satisfies a temporal property

- Non-algorithmic
- Parts can be automated
 - e.g. finding invariants

Reduces temporal reasoning to first-order reasoning
Deductive methods

Weakness:
• Different rules for different properties
• Non-automatic in the general case

Strength:
• Can handle infinite-state programs
• Recent methods for software model checking are an automation of such deductive rules
We show proof rules for safety properties

• **Invariance**: Gp
 - p holds forever

• **Precedence**: pWq
 - p holds as long as q does not hold
 - unlike U, q is not guaranteed to eventually hold
Example

- Program with variables \{x, y\}
 \[P :: \text{if } x > 0 \text{ then } y := x + y \text{ else } y := 0 \]

- Transitions:
 \[\tau_1: x > 0 \quad \text{and} \quad y := x + y \]
 \[\tau_2: x \leq 0 \quad \text{and} \quad y := 0 \]

- Formulas in first-order logic:
 \[\rho_{\tau_1}: x > 0 \land (y' = x + y \land x' = x) \]
 \[\rho_{\tau_2}: x \leq 0 \land (y' = 0 \land x' = x) \]
Notation: \{pre\} \tau \{post\}
If the transition \(\tau\) is executed from a state that satisfies pre then after the execution post holds

Verification condition:
\(\rho_\tau \land \text{pre} \rightarrow \text{post}'\)
Example (cont.)

To prove:

- \{ y > 0 \} \tau_1 \{ y > 0 \}

- Prove the verification condition:
 \((Y > 0 \land (x > 0 \land y' = x + y \land x' = x)) \rightarrow y' > 0\)

Everything is translated to first-order logic!
Basic invariance rule

- To show that assertion φ always holds:

 $\theta \rightarrow \varphi$

 $\{\varphi\} \tau \{\varphi\}$
 for all $\tau \in P$

 \[\frac{}{G \varphi} \]

- θ - initial condition
- τ - transition
Additional invariance rules

\[
\begin{align*}
\text{G}_p, \; p \rightarrow q & \quad \text{monotonicity} \\
\hline
Gq & \\
\text{G}_p, \; Gq & \quad \text{conjunction} \\
\hline
G(q \land Gq)
\end{align*}
\]
• **All the proof requirements are translated to first-order logic**

• proved **manually or sent to a theorem prover**
Precedence $p \mathbin{W} q$

- If p initially holds then p holds as long as q does not hold

$$\{p\} \tau \{p \lor q\} \quad \text{for all } \tau \text{ in } P$$

$$\quad \quad p \Rightarrow p \mathbin{W} q$$

- Can be extended to nested W
Algorithmic verification - Model Checking
Algorithmic verification - Model Checking

An efficient procedure that receives:
- A finite-state model describing a system
- A formula in propositional temporal logic, describing a property

It always terminates and returns
yes, if the system has the property
no + Counterexample, otherwise
Finite models over atomic propositions

- Kripke structure $M = (S, I, R, L)$
LTL model checking

To check if $M \models \varphi$

- construct tableau $T_{\neg \varphi}$:
 - A finite model
 - contains all paths that satisfy $\neg \varphi$
Example

To model check $M \models G (\text{req} \rightarrow F \text{grant})$:

- Construct a tableau $T_{\neg \varphi}$ for the negated formula

$\neg \varphi = F(\text{req} \land G \neg \text{grant})$

“There is a request that is never granted”
Model checking (cont.)

- **Construct the product** $M \times T_{\neg \varphi}$
 - Contains all paths in M that do not satisfy φ:
 - *Counterexamples*

- **Check if** $M \times T_{\neg \varphi}$ **contains a path**
 - **Yes** - $M \models \neg \varphi$
 - The path is a counterexample
 - **No** - $M \models \varphi$
Tableau for $\psi = F(r \land G \neg g)$
Tableau for $\psi = F(r \land G \neg g)$
Tableau for $\psi = F(r \land G \neg g)$
Tableau for $\psi = F(r \land G \neg g)$
We found a (fair) path in $M \times T$

- Conclusion: $M \not\models G(\text{req } \rightarrow \text{F grant})$
Other contributions in this context

- Using different notions of fairness for modeling systems:
 Impartiality, justice, fairness
 - deductive rules for fair systems
 - model checking of fair models

- CTL^* compositional model checking

- And many more
Thank you!
References

• The Temporal Logic of Programs
 Amir Pnueli, FOCS 1977

• On the Temporal Analysis of Fairness
 D. Gabbay, A. Pnueli, S. Shelah, J. Stavi
 POPL 1980

• The Temporal logic of Branching-time
 M. Ben-Ari, Z. Manna, A. Pnueli

• Temporal Verification of Reactive Systems: Safety
 Zohar Manna and Amir Pnueli
 Springer, 1995
• Impartiality, Justice and Fairness: The Ethics of Concurrent programs
 D. Lehman, A. Pnueli, J. Stavi
 ICALP 1981

• Algorithmic and Deductive Verification Methods for CTL*
 Amir Pnueli, Yonit Kesten
 Models, Algebras and Logic of Eng. Software 2003