
�
© 2008 IBM Corporation

������������	
�����

Ilan Beer
IBM Haifa Research Lab
27 Oct. 2008

�
© 2008 IBM Corporation

� ���� �����

� As the semiconductors industry progresses deeply into
the sub-micron technology, vulnerability of chips to soft
errors is growing

� In high reliability systems, as well as in aviation and
space, soft errors are already a major issue

� It is believed that in the near future soft errors will
become a major issue for more systems

� A relatively hot subject in conferences in recent years
� On the other hand,

“Fifteen years ago soft errors were the next threat.
Fifteen years later they are still the next threat”

Tim Slegel, Distinguished Engineer, IBM

�
© 2008 IBM Corporation

�
��� �

� Background – facts about soft errors
� Design solutions for dealing with soft errors
� Similarity and dissimilarity to functional verification

�
© 2008 IBM Corporation

� � ������ �������������

� Neither functional problems nor production ones
� Hence cannot be found during functional verification or

production testing

� They occur during normal operation
� The value of a memory element or a logic gate is flipped
� The cause is transient and the error can be fixed by

rewriting the correct value

�
© 2008 IBM Corporation

	� ��� ��� ���
����

1: Alpha particles
� Emitted from radioactive impurities in silicon and package
� An alpha particle is equivalent to a Helium nucleus
� Fly through silicon, affecting nearby devices
� A few parts per billion are enough to cause problems
� Hit rate depends on the purity of materials used in the

production process
� The duration of a strike is about 100 picoseconds

�
© 2008 IBM Corporation

	� ��� ��� ���
��������� ���

2: Cosmic rays
� Mainly neutrons
� Hit silicon and cause emission of alpha (and other) particles
� Only neutrons with enough energy penetrate the atmosphere and

reach earth
� ~15 particles/cm2-hour at sea level

� Higher flux in higher elevations
� 300 times more at 10 KM (commercial flight height)
� Much more in satellites

� 3-5 meters of concrete can provide enough shield

� Also wire crosstalk, voltage surges, etc.

�
© 2008 IBM Corporation

� ������ � �� �� �� �
�� ���� �
�

� A strike by a charged particle can change the logic value
of a device

� Not every strike flips the value
� Depends on strike energy and on the charge stored in the device
� Stored charge depends on transistor capacity (size) and

operation voltage
� Both are reduced as technology progresses

� The fault rates of specific device types (e.g., sram, dram
and latches) are calculated using models based on
empirical results

� Although the particle is positively charged, it can change
a logic value to either ‘1’ or ‘0’

�
© 2008 IBM Corporation

���� ��	��� ���������! � �" ��# ����$ �# �

� Smaller size => less capacitance => less charge =>
increased vulnerability

� Smaller size => less area => less strikes

� These conflicting effects indeed cancel each other to
some degree

� However, although feature size shrinks, the number of
features grow, so the total system area does not shrink

	
© 2008 IBM Corporation

� �
���� �% �& �� ���

� Examples
� Logical masking
� A register is rewritten after the fault and before being used
� A unit or thread is inactive at this moment
� Faults that only affect timing (e.g., in branch prediction)
� The SW application does not use this value until

overwritten
� Vanishing depends on where we measure

(macro/unit/processor/system/SW application)
� All measurements except the application are pessimistic

� In Power6, more than 99% of the faults vanished (beam and
simulation)
� Less vanishing in datapath, more in control logic

�

© 2008 IBM Corporation

	�� �� ��' %

� Fault: a bit flip
� Error: a fault that caused harm

� Propagated to a point where it spoils the computation
� An error can be either SDC or DUE (or hang)

� SDC: Silent Data Corruption
� A fault that did not vanish and was not detected
� Theoretically should be measured at the SW application level
� We use this term to describe an error at the interface between

HW and SW because we limit ourselves to hardware solutions
� DUE: Detected Uncorrectable Error

� The fault was detected but cannot be corrected nor recovered
� Usually stops execution; recovery is done by the layers above

� A fault that was corrected or recovered is not an error

��
© 2008 IBM Corporation

� ��� ����� �
����� ��$ � �(�� ��)

� Interesting fact: without detection and correction, (d) only doubled!
� These numbers were measured by beam experiments and verified

by simulation

Sanda et al., IBM Journal of Research and Development, Jan. 2008

��
© 2008 IBM Corporation

$ �� ��* + ��� �� ��

� Natural hit rate is too low for measuring derating
� Solution: Accelerated irradiation by protons and neutrons

� Measuring faults: latches accessed through the scan chain (idle)
� Measuring errors: by checkers during run

� Pros
� The system runs at full speed

� Cons
� A post production activity

� Too late to affect the design

� Hard to analyze specific events
� No targeted injection

��
© 2008 IBM Corporation

� � + � � � ���% ��� ���* + ��� �� ��

� The number of faults in beam experiments was relatively
low (< 2300)

� Statistical fault injection (SFI, described later) converged
to similar results

Ramachandran et al., DSN08

��
© 2008 IBM Corporation

� ��� ����� �
����� �, ������� ��- � ���

� In IBM Power6
� RUT is the recovery unit
� Note that the scale begins at 90%

Ramachandran et al., DSN08

��
© 2008 IBM Corporation

� ��� % ���� ' � .� �
��� �# �

� A single fault at a time is assumed
� Because fault frequency is relatively low
� No problem if there are simultaneous faults in two devices with

separate detection/correction/recovery logic

� However, a single particle strike may flip multiple bits
� Special treatment in memory (see later)
� Less frequent in latches – they are bigger and sparser

� Note: a single fault in a gate can spoil multiple latches
� Luckily, we currently neglect faults

in combinational logic

��
© 2008 IBM Corporation

� �
����� �� � / �� ����� ��0 �' ��

� Have effect only if latched
� Three types of masking can prevent latching

� Logical masking
� Electric masking: the fault attenuates before being latched
� Latch-window masking: fault arrives outside tsetup+thold

� As a result, combinational logic faults are often neglected
� This may change if clock frequency continues to grow

� tsetup+thold will occupy more of the cycle time
� Shorter combinational path from latch to latch – less attenuation

and less masking
� Some combinational devices in the datapath are protected

(e.g., integer arithmetic)

��
© 2008 IBM Corporation

� ���
�� � � ��- � ���

� Both faults and errors (faults that escaped) are usually
measured by FIT (Faults In Time) units
� The number of faults/errors in 1 billion hours (~114,000 years)

� FIT is convenient because it is additive
� The FIT of a system is the sum of FITs of its components
� Independent random variables with Poisson distribution

� Assuming that particle strikes are independent events

� FIT is proportional to 1/MTTF (Mean Time To Failure)
� MTTF is not additive

� A single bit has fault rate of about 1-10 mFIT
� A 1 GB memory has fault rate of up to 109*8*0.01 = 8*107 FIT

An error every 12.5 hours

��
© 2008 IBM Corporation

(��/ � �, � ��� �����

� FIT in: the anticipated fault rate
� FIT budget: requirement for maximum number of errors
� Derating: the ratio between faults and errors

� FIT in / FIT of errors
� Intrinsic derating

� Faults that “naturally” vanish as a result of the specific design
structure

� Explicit derating
� Achieved by detection and correction

� Goal: Given FIT in and FIT budget
� Achieve derating >= FIT in / FIT budget

� Measure the intrinsic derating
� Add explicit derating >= FIT in / FIT budget / intrinsic derating

�	
© 2008 IBM Corporation

, ���' � ���
���� �

�

© 2008 IBM Corporation

� / �
��, ���' � ���
���� �

� Solutions include prevention, detection, correction, and
recovery

� Solutions depend on goals. For example,
� In some cases, stopping rather than recovery is enough
� If no delay is allowed, backtracking-based recovery is not an

option

� Solutions depend on what we protect
� Memory
� Datapath
� Control logic

��
© 2008 IBM Corporation

� / �
��, ���' � ���
���� � ���� ���

Solutions can be provided at various levels
� Physical: add to the chip layers that collect charge (prevention)
� Circuit: hardening of selected latches (prevention)

� Increase charge by increasing size or adding capacitors
� Redundancy tricks

� Logic and micro-architecture (next slides)
� Software: calculate twice, sequentially or in parallel
� Combined: detection by hardware, recovery by software

US Patent 6624677

��
© 2008 IBM Corporation

0 �' �� ��� # �
� ��� �����
�� 0 � � � �
��
���� �
� Detection is based on redundancy
� We want a fault to bring the system to a non-reachable state

� Bad parity is an example of an unreachable state

� If detection is not done close enough to the point of fault,
the fault may escape
� Downstream, it might manifest itself as a reachable state
� This is why functional checkers are not good enough for soft error

detection

P faultP

��
© 2008 IBM Corporation

& ��% �1 �/
�����
���� �

� Triple-Modular Redundancy (TMR)
� Three replicas
� Compare state/outputs and vote
� A fault causes no delay
� Used in satellites
� Redundancy of more than 200%

P1

P2 Vote

P3

��
© 2008 IBM Corporation

& ��% �1 �/
�����
���� � ���� ���

Duplicate and backtrack
� Two replicas
� The architected state is compared in every cycle
� Backtrack to a safe snapshot
� Used in older generations of

IBM z-series processors
� Redundancy of more than 100%

� Both solutions are not limited to a single fault
� Both are very expensive
� They can be applied to parts of the design

P1

P2 =?

��
© 2008 IBM Corporation

� � ��% ���
���� �

� Useful property: A huge number of elements; at any
time, only one is accessed through a read/write port

� Solution: Error correction code (ECC)
� Increased Hamming distance between legal values
� Usually can correct one fault and detect two

� Cost: A few additional bits per word + ECC generator +
ECC corrector

Data outECC
generator

ECC
corrector

Data in

Memory

��
© 2008 IBM Corporation

� � ��% ���
���� � ���� ���

� No need to backtrack; no delay
� Problem: One strike can change multiple adjacent bits

� Solution: Interleave, so that bits of the same word are placed far
from each other

� Problem: Faults may accumulate in the course of time
� Solution: Periodic refresh

� A perfect solution for ~80% of the system area
� Consumes nothing from the FIT budget
� Considered as a solved problem; we will not deal with it

further

��
© 2008 IBM Corporation

, ���+ ��� ��
���� �

� Common elements
� Wide buses that move data without modifying it, possibly through

multiplexers
� Parity-based detection (*)
� CRC for packets (no extra lines, no need to detect in between)
� ECC is not applicable

� Arithmetic operations (integers)
� Residue checking (calculation modulo a small integer)

� Satisfactory design methodology and implementation
� As long as the elements fall into one of the above classes

� Usually has relatively low FIT budget
� Occupies ~80% of the non-memory area

��
© 2008 IBM Corporation

(����%

P

�	
© 2008 IBM Corporation

� �� ����0 �' �� ���
���� �

� Only latches are protected, not combinational logic
� The goal is to verify that the value read from the latch is

the last value written into it
� A common solution is parity prediction and checking (*)
� Designers also use functional checkers but they don’t

know what is covered
� Have to find a compromise between detection quality

and cost in area/power/timing/wiring
� Immature design methodology and implementation
� Usually has high FIT budget relative to its size

�

© 2008 IBM Corporation

(����% �(��# ������

� Calculate parity of latch inputs (!) on write
� Check parity of latch outputs in every cycle (not on read)

� Both timing and wiring complexity limit the number of
protected latches per parity bit

� Natural grouping does not always exist

P

��
© 2008 IBM Corporation

1 � ��� ��% ������� ��$ � �(����������

� Central recovery in a separate unit
� Takes snapshots of the architected state
� On fault detection

� Backtracks to a valid snapshot
� Reverts to the first instruction discarded
� Resets the relevant units to valid states (e.g., flushes pipelines)
� Stops if recovery is impossible

� Detection devices provide information for focused
recovery and fault analysis

� Recovery imposes time limits on detection

��
© 2008 IBM Corporation

� � ��., ��� �����

� In Power6
� With detection: 3.5% corrected, 0.6% DUE, 0.2% SDC
� Without detection: only 0.4% SDC (0 detected; 0 DUE)

� Most of the detected faults could vanish
� Too many recoveries – not a big problem
� Too many DUEs – a big problem
� Reason for over-detection

� We protect devices, not against bad states
� Protecting against bad states would cost much more

� DUE minimization by deferring until instruction retires
� No delay problems because there is no recovery

��
© 2008 IBM Corporation

& ����������� �� �+ ����

��
© 2008 IBM Corporation

& ����������� �" ���

� Main goal
� Verify that the system meets the FIT budget requirements while

retaining functional correctness
� Sub-goals

� Measure system derating
� Measure derating/vulnerability of sub-components

� For optimal use of resource budgets
� Verify that the detection logic indeed detects
� Verify that the recovery mechanism indeed recovers
� Verify that the soft error handling logic does not impair functional

correctness

��
© 2008 IBM Corporation

�� �����% ���������������& �����������
����
� ����� ��& �����������

� RTL of a design is given
� Valid stimuli (tests) are generated

� Injected faults can be regarded as part of the test
� We verify that the design behaves correctly for all inputs,

including the presence of faults
� Use of interface checkers or expected results
� Coverage is possibly measured
� The state space is huge

� Fault injection increases the state space even further.
For exhaustive verification, a fault should be injected to every
latch in every reachable state

��
© 2008 IBM Corporation

� ��� + ����� �� + + �����

� Use sequential equivalence
� In the faulty copy, allow one latch to change its value in

one arbitrary cycle (use non-determinism)
� The two copies should be equivalent even in the

presence of one fault

Good

Faulty

!=
SDC

Environment model

��
© 2008 IBM Corporation

� � % ��� + ����� �

� Soft error requirements are statistical
� Not every fault needs to be detected or recovered (FIT budget)
� Only typical workloads are interesting, not corner cases

� After recovery, the faulty copy no longer behaves as the
copy without a fault
� It is reset to a valid state, probably not a state of the design

without a fault (e.g., the pipeline is flushed)

� We cannot neglect the state explosion problem
� The comparison should be applied to the entire design in order

not to be pessimistic

��
© 2008 IBM Corporation

� �(��������� + + ����� 2
������������ �
���� 3�� ���� �

��� ��
� Inject faults one at a time
� Simulate enough cycles to allow one of these

� Vanishing
� Detection by the soft error checkers + recovery or stopping
� Detection by “interface” checkers (SDC)

� After enough runs, measure output FIT
� The average “latch intrinsic FIT” of latch injections that resulted in

SDC, multiplied by the total number of latches

� Use this procedure to report areas that are more
vulnerable
� Same calculations as above, but for specific parts
� This can help designers invest effort and resources efficiently

�	
© 2008 IBM Corporation

�# �� ���% �� ' �����+ ����� # �& �� ��� �# �
� �
��� Identifying vanished faults is important

� Efficiency: If a fault vanished, a new fault can be injected
� Correctness: When simulation ends, we want to know if the fault

is latent in the internal state, in which case it is a potential SDC
� Solution

� Lock-step simulation of good and faulty machine
� Compare internal state each cycle

(or every k cycles)
� A by product

� By comparing the architected state
every cycle we can find SDCs

� More conservative than interface checkers
� Sometimes over-pessimistic

� The solution works only as long as there is lock-step
� E.g., not after recovery

Good

=
Vanished

Faulty

!=
SDC

test

�

© 2008 IBM Corporation

�� � �(��/ � �����/ � ���� �#

� Intelligent sampling of the injection space
� Identifying protected latches to avoid unnecessary injections

(alternatively, verifying designers’ annotations)
� Knowing how many runs are needed to converge to

statistically meaningful results?
� Optimizing simulation to allow more injections
� Writing simulation checkers that identify all escapes
� Selecting typical workloads
� Identifying vulnerable areas in the design
� Verifying the recovery process (both recovery unit and

pervasive branches)
� Finding a good compromise between FIT budget and

resource budgets

��
© 2008 IBM Corporation

0 �� ' ���	�� �" ��2��
�� ���� �
" �� ������� � ����� � �
, ���� ���� �0 �' ��� Currently

� Intensive effort for the designer
� Inserted logic should be verified
� Logic is not necessarily efficient

� Automatically generated logic
� Will be correct by construction
� Might be more efficient
� Will save designer effort
� Will shorten time to market

� Naïve generation is already possible
� The challenge is to close the loop of generation-

measurement in order to find the best compromise
between FIT budget and area/power/timing budgets

��
© 2008 IBM Corporation

4 ��# �������

� If we reduce the soft error rate to very low levels,
we may face the next barrier: hard errors
� Wire wear-out by electromigration
� Gate oxide wear-out

� Intrinsic vulnerability is very low but there is no derating
� May result in SDC or DUE; no vanishing; no recovery
� In memory, correction by ECC (one fault)
� Can be detected with soft error detection logic
� However, we protect only latches against soft errors
� Hard errors in combinational logic cannot be neglected
� Solutions

� Protect the combinational logic in hardware – expensive!
� BIST + SW

��
© 2008 IBM Corporation

1 � �� �� # � # �$ ��� �� �� �

� Architecture Design for Soft Errors
by Shubu Mukherjee (Intel)

	� �� � �% �

