

Using Linear Programming Techniques for Scheduling-based Random Test-case Generation

Amir Nahir Yossi Shiloach Avi Ziv

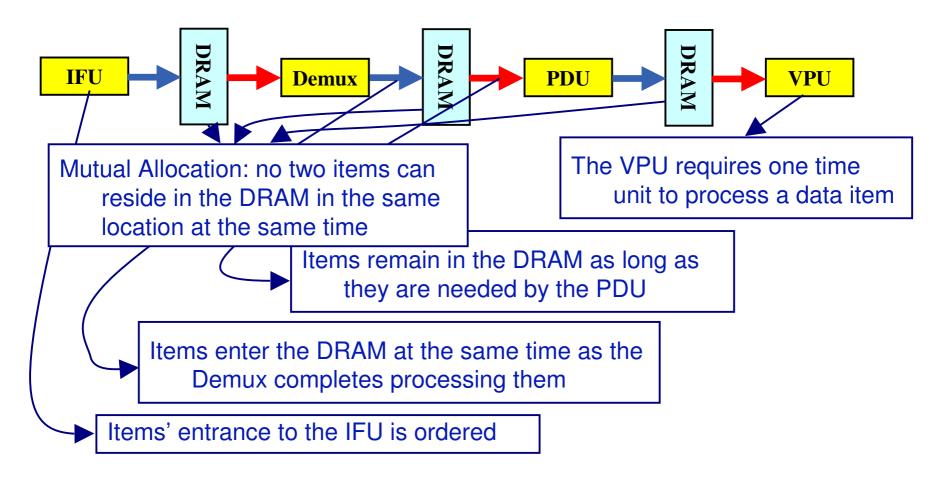
Agenda

- What is Scheduling-based Test-case Generation
- CSP Model
- Mixed Integer Linear Problems (MIP)
- MIP Model
- Results
- Future Directions
 - Combining CSP & MIP

Scheduling-based Test-case Generation – DVD Player SoC

Example I/O 700.00.00. **MMU** ports **DVD Drive Input Unit IPBB** (IFU) To TV **Video Processing Unit MPEG2 Video** (VPU) Decoder (PDU) **Demultiplexer Audio Processing** Unit (APU) RISC CPU -Controller **IBBP**

Constructing a scheduling problem



Scheduling Solution

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
IFU			F)	E	3	E	3							F)	E	3	E	3			
Demux					F)	E	3	E	3							F)	E	3	E	3	
PDU							F)	E	3	E	3							F)	E	3	В
VPU										I B	I _T	B_B	B _T	B_B	B _T	P_B	P_{T}	P_B	P_{T}	P _B	P_{T}	I B	I _T
VPU-N										I _T	B_B	B _T	B_B	B_T	P_B	P_T	P _B	P_T	P _B	P_{T}		I _T	B_B

Scheduling Rules

Basic rules:

- Duration of processing
- Order within the processing core
- Order between processing cores

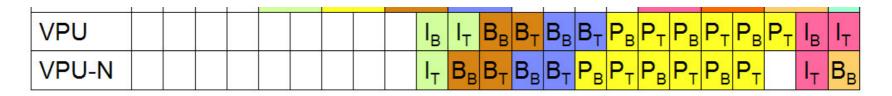
More Complex rules:

- Mutual exclusion: two items cannot be processed by the same core at the same time
- Mutual allocation: two items cannot be stored in the same location at the same time

Scheduling Rules (cont.)

Special DVD rules:

- Whenever the VPU has no new data items to process, the controller instructs the VPU to display the last two data items again
 - Causing the image on the viewer's screen to freeze
- The VPU-Next core processes the data item that will be processed by the VPU at the following cycle
 - Unless the VPU is idle, or the data item to be processed is from a different group. In these cases, VPU-Next should be idle



Constraint Satisfaction Problems - Definition

[Mackworth, Freuder, Montanari, Dechter, Rossi, ...]

- ♦ CSP P = {V, D, C}
- Variables
 - Address, register_value
- Domains (finite sets) for each variable
 - Address: 0x0000 0xFFFF
 - Number of bytes in a 'load': { 1, 2, 4, 8, 16 }
- Constraints (relations) over variables
 - ♦ (load n bytes) → (align address to n bytes boundary)
 - value(base_reg) + displacement = address
- Solution for a CSP
 - Every variable is assigned a value from its domain, such that all constraints are satisfied
 - ♦ All solutions are born equal. There is no better or best solution!

Modeling our scheduling problem using CSP

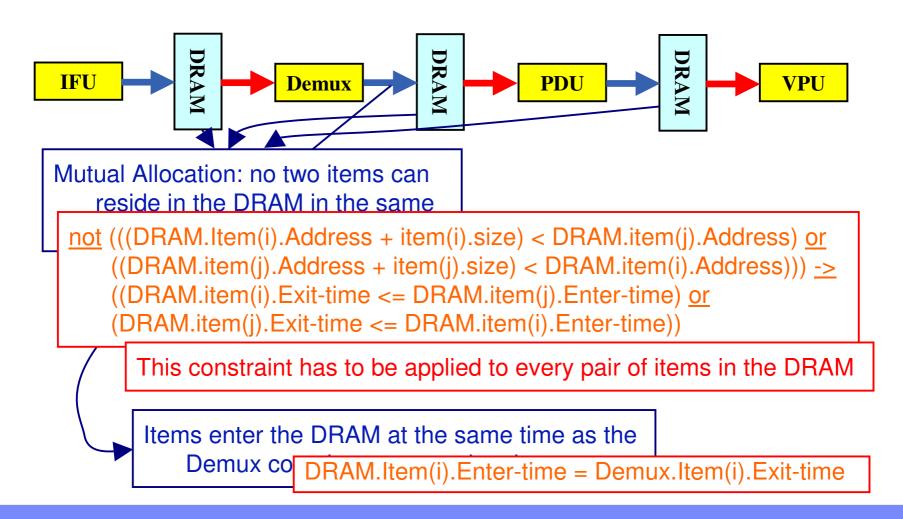
[Based on a well-known Scheduling->CSP reduction]

- Variables
 - <core , data-item, enter-time / exit-time / address>
 - ♦ IFU.I-Frame.Enter-time
 - DRAM.B-Frame.Exit-time
 - DRAM.B-Frame.Address

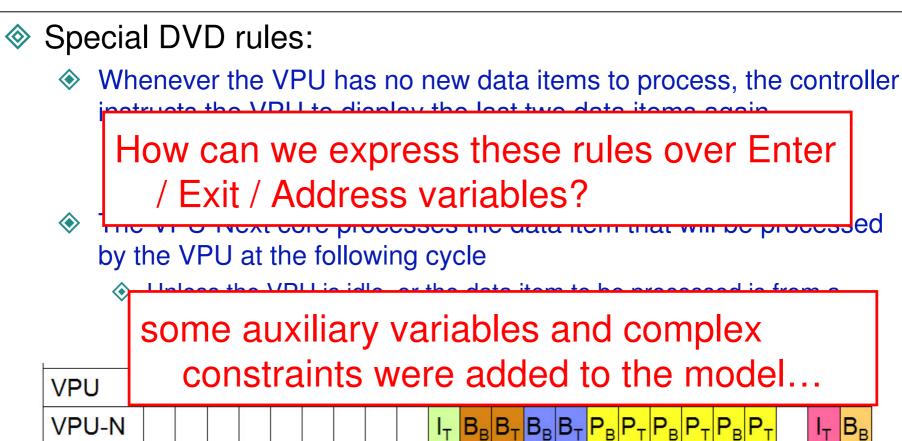
Domains

- For enter/exit variables discrete time (clock cycles)
- ♦ For address variables DRAM addresses

CSP Constraints



Modeling our scheduling problem using CSP – the harder cases...



Mixed Integer Linear Problems - Definition

- \Diamond MIP P = {V,R,C,f}
- Variables
- Ranges
 - Upper bound & Lower bound
- - Constrain certain variables to receive integer values only
- A linear objective function

Mixed Integer Linear Problems – Definition (cont.)

- Feasible solution for a MIP
 - Every variable is assigned a value from its range, such that all constraints are satisfied
- Optimal solution for a MIP
 - A feasible solution, such that there exists no other solution with lower value to the objective function
- MIP Solvers find optimal solutions

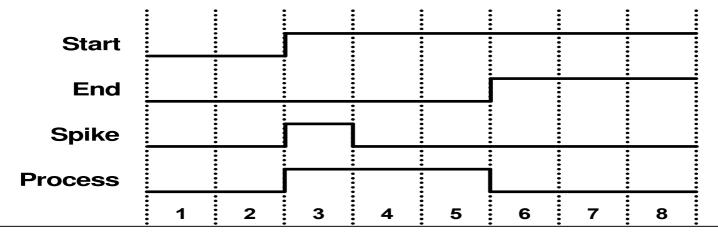
Modeling our scheduling problem using MIP

Ranges

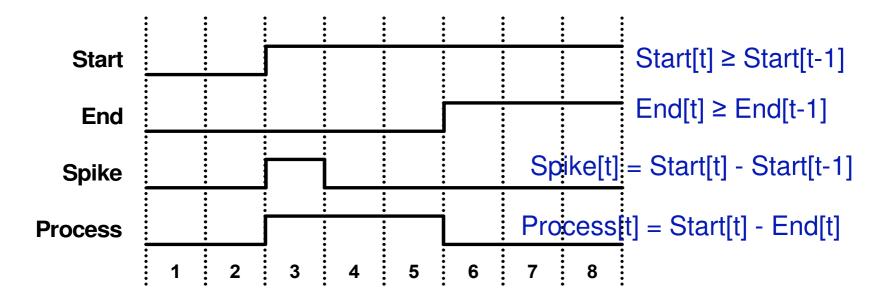
- **♦** Only [0,1]
- Decision Problems

Variables

♦ For each <core , data-item>:

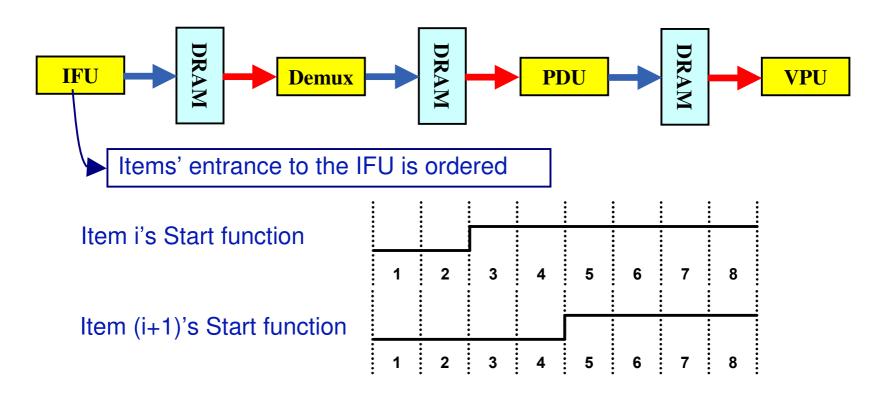


Constructing the MIP "functions"



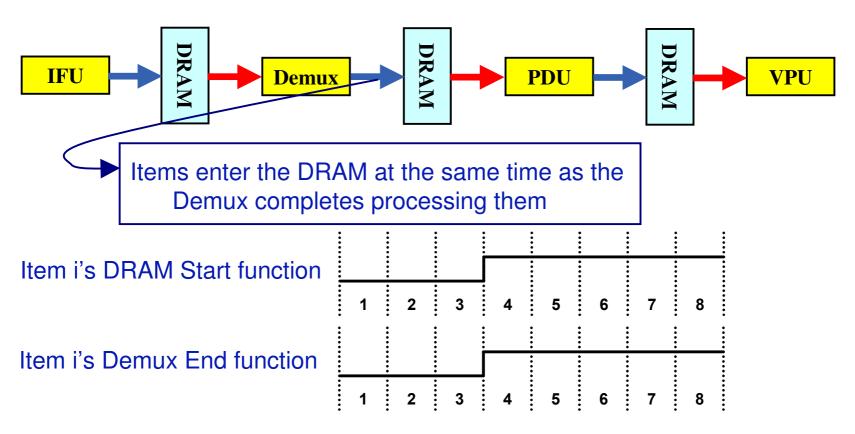
Not all variables are constrained to integers (but all variables will eventually be assigned with integer values)

MIP Constraints



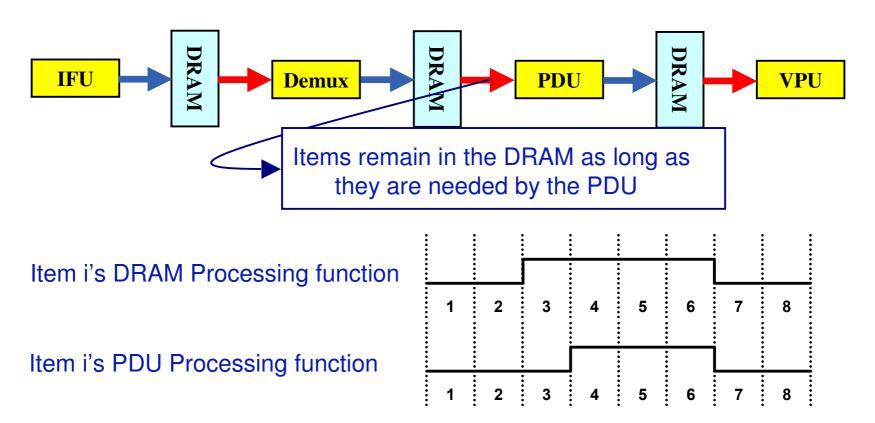
Item i's Start[t] ≥ Item (i+1)'s Start[t]

MIP Constraints (cont.)



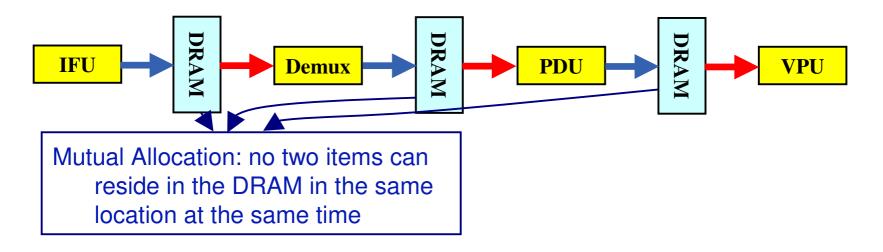
Item i's DRAM Start[t] = Item i's Demux End[t]

MIP Constraints (cont.)



Item i's DRAM Processing[t] ≥ Item i's PDU Processing[t]

MIP Constraints (cont.)



Sum(Item i's size x Item i's DRAM Processing[t]) ≤ DRAM size

Modeling our scheduling problem using MIP – the harder cases...

- Special DVD rt Remember these?
 - ♦ Whenever the VPU has no new data items to process, the controller instruc $\sum Process_{j}[t] \geq \sum Process_{j}[t-1]$ again \Rightarrow Ca $j \in VPU$ $j \in VPU$
 - The VPU-Next core processes the data item that will be processed

MIP & Randomness

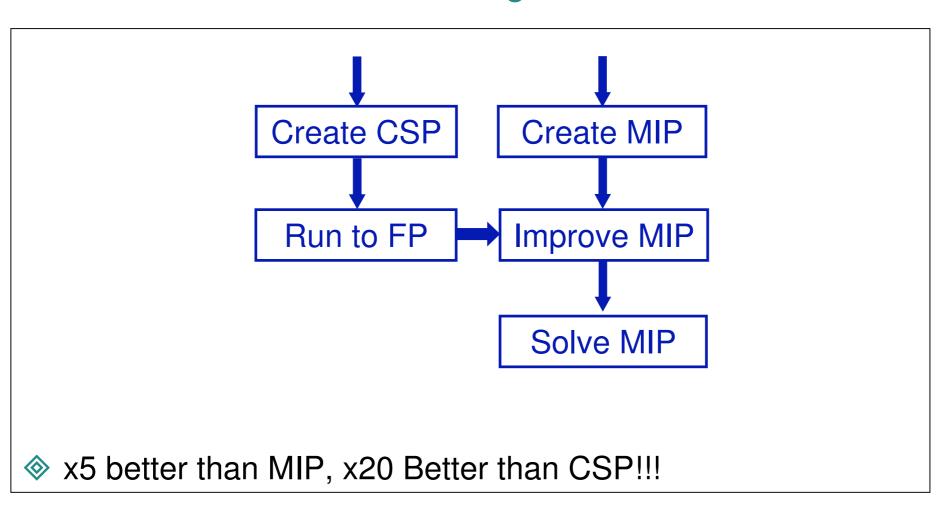
- Test-case generators are required to generate many different solutions from the same test specification
- ♦ MIP solvers are optimizers they seek the optimal solution
- Our solution: we randomly select a set of variables and add them to the objective function
 - In every execution, the solver is driven towards a different solution

Experimental Results

Test name	Framework	Variables	Constraints	Success Rate	Time to Success	
Play(IPBB,18)	CSP	552	3077	100%	40.76	
	MIP	9412	14429	100%	1.73	
Play(IPBB,23)	CSP	582	3260	90%	129.42	
	MIP	12002	18469	100%	18.99	
Play(IPBBPBB,28)	CSP	945	7562	90%	529.99	
	MIP	25410	39225	100%	90.75	
Play(IPBBPBB,33)	CSP	975	7795	40%	2181.20	
	MIP	29920	46265	100%	400.08	

- An in-house solver was used for the CSP framework
- ♦ ILOG's CPLEX 10.0 was used for the MIP framework

Future Directions - Combining CSP & MIP



Summary

- CSP is the prominent framework for test-case generation, and for good reasons
 - Expressiveness
 - Embedded randomness
- MIP is more efficient than CSP
 - Because of its strong mathematical foundations
- MIP can't replace CSP, but can assist it in difficult problems
 - By replacing CSP over specific problems
 - Through hybrid technologies

Questions Please

