AGRID - Distributed and Autonomous Agent-based Grid Resource Allocation Manager

Work in Progress
Tsahi Birk & Yoav Levy
Electrical Engineering Department, Technion
AGRID – Presentation Outline

• Defining the domain of application
 – Large collections of medium-sized compute clusters

• Defining the problem and the need
 – Fluctuations in resource availability ineffectively handled by centralized meta-schedulers

• Presenting the proposed solution
 – Distributed, two-tiered, market-based resource management
Typical Grid Environment

Grid Middleware

Grid Node

Job Submissions

Meta Scheduler

Back
Grid Resource Allocation Management (GRAM)

• Resource Management is a central component of any grid system

• Typical issues in GRAM include:
 – Resource Discovery (global namespace)
 – Allocation & Scheduling Model
 – QoS and Prioritization
 – State Estimation

• Multi-cluster GRAM calls for different thinking
Problem Statement

• Information on cluster resource availability is
 – Incomplete: hard to retrieve and manage extensive state at a central location
 – Volatile: part of the state changes at a high rate

• Ability of a central meta-scheduler to respond to changes in intra-cluster resource availability is limited

• Causes valuable usage slots to be wasted
 – Example: Aircraft takeoff / landing queue problem
AGRID – The Agent Grid
Principles of Operation

• Two-tiered middleware composed of software agents

• Dynamic allocation of the resources of any given cluster to jobs running on it is handled at that cluster by competing software agents

• Slower, inter-cluster decisions are handled in a centralized "marketplace"
 – Placement of new jobs
 – Redirection of ongoing jobs in reaction to major, persistent state changes
AGRID – The Agent Grid
Principles of Operation (contd.)

- **Market-based**: utility-based bidding for resources among competing parties
- **Agent Learning**: persistent agents gaining cumulative knowledge on site resource performance & pricing
- **Policy-based**: users and cluster owners interface middleware using policy functions
AGRID – Inter-Cluster Level
AGRID – Intra-Cluster Level

Users

Job Requirements & Policy

Cluster

Cluster Policy

Cluster Manager

Resources

User Proxy

User

Agent

Marketplace

User Proxy

User

Agent

User

Agent
AGRID – Assumptions & Prerequisites

• Local cluster scheduler capable of
 – Fragmenting resource usage to temporal segments
 – Reporting resource performance
• Jobs can migrate (check-pointing supported)
• Several markets may exist in the “world”; users will select their preferred market resources are scheduled and run on one
Algorithms – Design and Operation

• Each user proxy periodically runs the same algorithm on its local database

• Goals:
 – Find locally optimal solutions to pending jobs
 – Prepare bids to be sent to cluster resource manager

• Utility of match will be affected by:
 – Target QoS
 – Transfer costs to a different resource
 – Risk level the job is at the time
 – Proximity of the Allocation Horizon

• Use back-tracking, multi-knapsack algorithm
DISAGRID – AGRID Simulator

• Designed to serve as a proof-of-concept as well as a testbed for algorithm and protocol evaluations
• Incorporates a thin abstraction layer
 – The rest is final code
• Java-based with extensive use of code generation
 – Use of XML, XSLT
 – Around 40% of semicolons are machine generated
• Uses existing visualization package - JUNG
Current Status & Future Work

• Work done till now:
 – Simulation framework functioning
 – “Job Path” protocols implemented
 – Intra-cluster allocation algorithms implemented

• Future Work:
 – Complete inter-cluster tier
 – Investigate effect of various system factors:
 • Grid size
 • Cluster resource & performance variety & volatility levels
 • Interaction and division of responsibility between tiers
 – Develop a distributed prototype
 – Large-scale experimentation on a real-world testbed
Questions?
Comments?

For additional information visit:
http://tx.technion.ac.il/~yoavlevy/agrid/
(link will appear on seminar site)
Thank You!
(Enjoy the Food…)
Market-Based / Agent-Based GRAM – Related Work

• Popcorn
 – An infrastructure for programming distributed computations in Java
 – Uses auctions to match resource “buyers” and “sellers”

• Nimrod/G
 – Nimrod enables users to perform parametric experiments by declaring deadlines and prices
 – Nimrod/G extends Nimrod to work over the Globus toolkit

• Negotiating Agents
 – Grid and Agent technologies are intermingling
 – Developers of the Globus Toolkit, agree with agent experts on the advantages that the convergence of the two approaches may bring

• Market-based GRAM and agent-based negotiation gain interest but still built on top of existing centralized and hour-glass shaped resource management systems