Thread Ghecker:

Saving Valuahle Time Otherwise Spent

+ _s\Searching for Hard-to-find Threading Errors

i ['-l: o . :.

Koby Gottlieb

Software Solution Group
Intel Corporation

INFORMATION IN'THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL®
PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF
SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO
SALE AND/OR USE OF INTEL PRODUCTS, INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT, OR
OTHER INTELLECTUAL PROPERTY RIGHT.

Intel'may make changes to specifications, product descriptions, and plans at any
time, without notice.

All dates provided are subject to change without notice.

Performance tests and ratings are measured using specific computer systems
and/or components and reflect the approximate performance of Intel products as
measured by those tests. Any difference in system hardware or software design
or'configuration may affect actual performance. Buyers should consult other
sources of information to evaluate the performance of systems or components
they are considering purchasing.

Intel; the Intelllogo, VTune, Intel Threading Tools, Intel Thread Checker are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2004, Intel Corporation.

* Threading: Why do we need it now?
— The Dual core future

* Challenges Unique to Threading
s Intel® Thread Checker product

— Features
— Demo
— How does it works?

* The Thread Profiler feature

Driving Parallelism

Computers/Chip

2004 2006*
55% HT Shipping Dual-Core | > 40% Dual-Core

100% HT Shipping Dual-Core | > 85% Dual/Multi-Core

Shipping Dual-Core '| > 70% Dual-Core

“Exiting 2006, we believe that over 40 percent of the
desktop product shipments will be dual core, over 80

percent of our server products will'lbe multi‘or dual A” CPU development

core, and over 70 percent of our mobile products will

be dual core as well. We are dedicating all of our on D uaI/Mu |ti—CO e

future product designs to: multi-core environments.
We have bet on this in terms of our software
environment, our ecosystem development, and our

a ey nectonpantformeisy - anigue Dual/Multi-Core
In'tel PAUL OTELLINI, IDF 7/2004 P rOdUCtS in a” Seg m eﬂts

Nexigeneration: Dial-Core: ltanium®
pleEessels

- NATIONAL CC
| ('EO(JRABEIC Eventually one billion
ﬁg\ transistors, or electronic
TeChp switches, may crowd a single
chip, 1,000 times more than

possible today.
Mational Geographic, 1982

Montecito

1.7B transistors

MNeset Cieneration — Monteciio
> Dual Core and Muliiinreaced
>3/ increase olaiforrn oandwiclin
rligner performance, lower power

245 Cacne

Efficiently Utilize Dual Cores

Dual-Core Systems

*One package with 2 cores

» Software impact
—2 Cores =» 2 processors
—2 Cores =» 2x resources

Use threads to exploit full
resources of dual core processors

intgl

Efficiently Utilize Dual Cores

Threanselmern

» OS creates process for
each program loaded

— Each process executes as a
separate thread

* Additional threads can be
created within the process

— Each thread has its own
Stack and Instruction Pointer

— All threads share code and
data

Process }

Data
Code

thread1()

thread?2
Stack

IP

Stack
IP

threadN,
Stack

IP

Efficiently Utilize Dual Cores

Threating sonware

*OpenMP” threads
—http://www.openmp-org/

*Windows” threads
—http://msdn.microsoft.com/

* POSIX” threads (pthreads)
—http://www.ieee.org/

If both cores fully busy, then 2x
speedup possible

intel *Other names and brands may be claimed as the property of others.

Challenges Unique to Threading

Gorrectness bug: Data Races

* Suppose: a=1, b=2

Thread Thread?2
X=a+b b=42

* What is value of x if:
— Threadi runs before Thread2? | x =3
— Thread2 runs before Thread1? |x = 43

» Data race: concurrent read, modify, write of
same address

Outcome depends on thread execution order

intgl 10

Challenges Unique to Threading

Solvinyg Data Races: Synciironization

Gh readi) /Th read?2 R

Acquire(L) Acquire(L)
a=1 b=42

b=2 Release(L)
X=a+b \ /

\Release(L)j

* Acquisition of mutex L ensures atomic access
— Only one thread can hold lock at a time
» Example APIs:

- EnterCriticalSection(), LeaveCtriticalSection()
- pthread_mutex _lock(), pthread mutex_unlock()

intgl

Efficiently Utilize Dual Cores

Amnani’s Law

e If only 1/2 of the -

code is parallel, .
2X speedup is P = parallel portion of process

unlikely y N = number of processors (cores)
O = parallel overhead

Challenges Unique to Threading

Threads Intro New Glass of Problems

¢ Correctness bugs

— Data races

_ Deadlock Intel® Thread Checker
finds correctness bugs
—and more...

* Performance bottlenecks
— Overhead
— Load balance
—and more...

Thread Profiler feature
pinpoints bottlenecks

Intel® Threading Tools can help!

intgl

Intel® Threading Tools

Intel® Thread Gheckerintro

*ldentifies threading bugs in
applications threaded with:

— Microsoft®™ Windows™ threads on Microsoft™
Windows” systems

— POSIX* pthreads on Linux* systems
— OpenMP” on Microsoft* Windows* and Linux*
systems
*Plugs into VTune™ environment
— Microsoft® Windows” for |A-32 systems
— Linux” for I1A-32 and ltanium®-based systems

intel *Other names and brands may be claimed as the property of others.

Intel® Threading Tools

Intel® Thread Checker Analysis

* Dynamic monitoring as software runs
—Data (workload) -driven execution

*Includes monitoring of:
— Thread and Sync APIs used

—Thread execution order
— Scheduler impacts results

—Memory accesses between threads

Only executed code path is analyzed

Intél® Threaid GChecker 2.0

Features

* Locates threading bugs:
— Data races (storage conflicts)

— Deadlocks (potential and actual)
— Win32 threading APl usage problems

— Memory leaks and overwrites

* Isolates bugs to source code line

* Describes possible causes of errors and
suggests resolutions

. Categorizes errors by severity level

intgl

Screen shot: Intel® Thread Checker

DIagnostcsList

kemon write of dSum at "Picpp' : 23 conflictz with a prior memorny read dSum at ‘ 1501 ‘ B ‘ d5um

"Pi.cpp” : 23 [anti dependence]

Grouped by Context [Best]

Memomn read of dSum at "Piopp’' : 23 conflicts with a prior memony write of dSum at 15M1 | FiFunc
"Pi.cpp” : 23 [flow dependence]

Verbose diagnostics

P23 1 MPEA0S DL AEXPICIE | NTEa0ngiH |1 swinaows\Pi\Del Lg\threadchecker. thr: ..D-iagnnsii.cs

..:

= Tatal

dSum

EE] Group 1 : "Picpp’: 12

"Pi.cpp: 12 1] ite -+ Fead da

| "Picpp™: 12 1] Read - ‘Wiite data 1501 | PiFunc

|"F'i.|:|:||:|": 12 2| “wite -> Fead datatace | 1501| PiFunc

"Pi.cpp: 12 3! WTIkE - WWihe data-race daLm

Group 2 : Whole Program 1

Whale Program 1 | 4! . Thread termination Lk noven

Group 3 : Whole Program 2

Whale Program 2 | 5! . Thread termination Lk noven

Group 4 : Whole Program 3

1] 1 2

Whale Program 3 | E! . Thread termination Lk noven

Group 5 : Whole Program 4

Unclassified . Error

Whale Program 4 | ?'! . Thread termination Lk noven

Warning Caution

| Group & : *Whale Program 5

. Infarmational Remark

Diagnostics List
in Terse mode

Summary
and legend

Screen shot: Intel® Thread Checker

source GoreView

Each Diagnostics in
List links to its
source code line(s)

gtart = wpwThresdim+l ;

Tfar |inc 1 = STaET; = 1+=maAThtrexdal
1
dx = {i-0.5)

AEYR T

return myTheeadium ; fS thresd =xit code
PiFunc

Screen shot: Intel® Thread Checker

[Cowile |1 ficcas [Fouthe]
| | 1] [

| M emoe read ol pérg & “Ficop”: 13 confis |
"Picpp": 12 | o O with = prar memone wail= ol et "'Picpp": 50

A DM E0d O g -
"Picop":12 bl carflicle wilk a pig | "Picpe'': 23
| 5 |"Picpg: 23 [|
| | | M Bmoy wite of o |
"Picpp': 12 3@ wrficlzwilhapy O OUP BY [["Picpe: 23
[|"Picpe™: 230w Configure Columns

L

gram 1_ !

Expand Al
adirig ™1 yradors 31l el Collapse Al

c"Fi.cpp'' | 23

What's this column?
| What's this diagnostic? |

return myTheeadium ; fS thresd =xit code
I ## PiFunc

Intel® Threading Tools

Intel® ThreadGheckerbemo

Find threading bugs faster

Thesecrets hehind the tool

* Automatic application instrumentation

— Binary instrumentation — VTune™ analyzer
technology

— Source instrumentation — Compiler technology
* Semantic replacement of Threading functions

— Observe thread management and synchronization

— Observe system functions which modify
arguments

o Partial order of threads drives analysis
* Execution generates annotated address trace

* Produce error diagnhostics in a single
execution

intgl

* Threads maintain an integer clock

* Objects (Thread & Sync) have a time vector
—T#1=10,0]
—Vector length is the number of threads

—Hold partial order relationship between
objects

* Memory has a shadow cell
—X=(T#,0)
—Record last accesses (thread id and time)

* The Max function Is used to merge the vectors
—Merge([A,B], [C,D])=[Max(A,C), Max(B,D)]

intgl

Actions

« ACQUIRE sync action (e.g. LOCK API)
—The lock isimerged with the thread
—The thread is advanced

« RELEASE sync action (e.g. UNLOCK API)
—The thread is advanced

—The thread is merged with the lock

+ ACCESS memory action (e.g- READ/ WRITE)
—Check shadow cell for conflict
—Updated shadow cell with threads info

intgl

Thread#1

Lock(L)
X=3

Unlock(L)

Thread#2

Lock(L)

X=X+1

D Unlock(L)

Start: T#1 =[1,0]; T#2=[0,1];L=1[0,0]; X=()

T#1 = [2,0]

compare with T#1=[2,0] : FIRST ACCESS
X=(T#1,2)

T#1 =[3,0]; L = [3,0]

T#2 = [3,2]

compare X=(T#1, 2) with T#2=[3,2] : OK
X=(T#2,2)

T#2 =[3,3]; L = [3,3]

compare X=(T#2 , 2) with T#1 [3,0] :
X=(T#1,3)

Intel® Threading Tools

“Intel® Thread Checker helped Siemens by identifying issues
In software we develop and' in software we purchase from
third parties. We use Intel Thread Checker to improve the
quality of our software and look forward to expanding the use
of the tool in-more of our software development groups.”

-Andreas Dietrich, Research and Development Image Processing, Siemens Medical Solutions

“Using Intel Thread Checker we discovered two elusive bugs on
the very first day, as well as numerous inconsistencies and
opportunities: for performance improvement. We were pleasantly
surprised because our product, AcuSolve*, has been running
successfully on multiple platforms for many years. We have
how incorporated it in our basic development and release
PrOCess.” -Farzin Shakib, President ACUSIM Software, Inc.

*Other names and brands may be claimed as the property of others.

Intel® Threading Tools

Ihe Threat Pronierreatire

* Pinpoints threading performance
bottlenecks in apps threaded with:

—Microsoft® Windows™ threads on
Microsoft® Windows™ systems

—POSIX* pthreads on Linux* systems

— OpenMP”* on Microsoft* Windows* and
Linux™ systems

*Plugs into VTune™ environment
—Microsoft®* Windows” for |IA-32 systems
—Linux” for 1A-32 systems

intel *Other names and brands may be claimed as the property of others.

Intel® Threading Tools

Ihread Pronierkeatire Analysis

* Monitors execution flows to find
Critical Path

—Longest execution flow is the Critical Path
* Analyzes Critical Path

—System utilization
— Over-subscribed vs. under-subscribed

— I'hread state transitions
— Blocked -> Running
» Captures threads timeline
—Visualize threading structure

intgl

Intel® Threading Tools

Threan Pronier Griiical Path

Analysis shown for 2-way system

Acquire lock L | Release L
Thread 3 .
®

Wait

.
»
L4
»
Thread 2 &
::.:_.'
»

® Wait for Th
Thread 1 ﬁ—(%

TO T1 T2 T3 T4 T5 T6 T7 TS T9 T10 T11 T12 T13 T14 T15

2&3

O

Critical Path View

for L

reads

e

W%it for

®
.o
| B

‘11

Start with the
critical path

Separate according
to system utilization

Add overhead

Further analyze by
thread state

. Mo thraad blocking time

D Sarial cruise time

D Sarial blocking lime

D Sarlal impact time

|:| Undersubscribed crulse time
D Undersubscribed blacking time
I Undersubscribed impact time
[] Fully parallel cruise time

[] Fully parallel blacking time
] Fully parallel impact time

[[] oversubscribed cruise time
|:| Oversubscribed blocking time
. Oversubscrbed impact time
D Owearhead lime

Summary

EXploiting DualiGore Systems:
Inhe intel® Threading Tools

* Add threads to realize full performance
benefits of multi cores

* |Intel® Threading Tools can help:
— Intel® Thread Checker finds threading bugs
— Thread Profiler pinpoints threading bottlenecks

Intel® Threading Tools shortens
development cycle for threaded apps

29

*Intel® Threading Tools
http://www.intel.com/software/products/

*OpenMP” threads
— http://www.openmp.org/

*Windows™ threads
— http://msdn.microsoft.com/

POSIX threads (pthreads)
— http://www.ieee.org/

in-tel *Other names and brands may be claimed as the property of others.

. A comprehensive source of information on tools and techniques
for developers of software for dual core systems

— “Programming with Hyper-Threading Technology™
How.to Write Multithreaded Software for Intel® 1A-32 Processors
Richard Gerber and Andrew Binstock, ISBN 0-9717861-4-3

» More infol at www.intel.com/intelpress

Purchase Intel Press books:

* IDF bookstore

(20% discount
during the conference)

» Shopintel.com
* Amazon.com

intgl

Acronyms
* Pthreads: POSIX* threads

in-tel *Other names and brands may be claimed as the property of others.

Backup screen shot: The Thread Profiler Feature

(TP: lab2.exe) Thread Profiler .3 (TP: Iabl.E:k:E}| 4 =

€|l No thread, blocking time

D Sarial cruise time

D Serial blocking lime

[serial impact time

— . [[] undersubscribed cruise time
Cruising time, 1 active thread |
0176701 [undersubscribed blocking time
. Undersubscribed impact timea
[] Fully parallel cruise time

Impacting time, 1 active thread D Fully parallel blacking time
0.350058

JUS WUOIAL T 900U WLIORE o 0 2N 16

] Fully parallel impact time
[[] Oversubscribed cruise time
[] oversubscribed blocking time
. Owersubscribad Impact ime

Time [seconds|

Cruising time, # of active threads equal to & of processors D Guerhead lime
0.353579

Chverhead time
0.0503446

Timeline

Backup screen shot: The Thread Profiler Feature

Pronie Niews: GoncurrencyLevels

TP:lab2.exe) Thread Profiler ...3 (TP: lab2.exe))|

[I”@"' [1 [[2 [[ﬂr | &

| % 1l Nothread, blacking time
E [sertal cruise time
| [[] serial blocking lime
. Serial impact time

Ran single threaded B Untomabicibad e i

. . Undersubscribed blacking time
~60% Of the tlme B Undersubseribed impact time
- %G @ D Fully parallel crulse timea
[] Fully parallel blocking time

TWO threads ran [:] Fully parallel impact time
simultaneously ~40% | Gvarsuhscrfbad EI‘I.JISE-I lime

|:| Oversubscribed blocking time

Of the time B Oversubscribed impact time

D Owverhead lime

)
=
=
(=]
[
o
b
@
=
=

=
T

CE:1, AR:1

Backup screen shot: The Thread Profiler Feature

Proiiie Views: Inreats View

TPab2.cpp | Thread Profiler oug: 23 (TP: labZ.exe) Thread Profiler .3 (TP: I-ahl-exe}|

()

| B Mo thread, blocking time

Lifetime Of D Serial cruise time

=2 D Serial blocking lime
the th read - Serial impact time
— [[] undersubscribed cruise time
. Undersubscribed blocking time
Active ti me Of B undersubscribed impact time

D Fully parallel crulse time

the th read [] Fully parallel blocking time

D Fully parallel impact time

=
5
o
B
T
o
@
1
[
=
E]
o
3
0
b
m
=)
=
=
o
=
El
@
=)

[[] oversubscribed cruise time

Time on the [[] oversubscribed blocking time
Critical Path [oversubscribed impact time

D Owverhead lime

CF:1. AR

T
| Critical Pgths Profile ' meline

08

Time [seconds|

02

=
o

=
-

Mone

Critic
Fark-...

CP:1, AR:1

Strea...

This object
caused all of

the impact

pustio Y |

B No thread, blocking time

[[] serial cruise time

[[] serial blocking time

. Serial impact time

[[] undersubscribed cruise time
. Undersubscribed blocking time
[Undersubscribed impact time
D Fully parallel cruise time

[[] Fully parallel blacking time
D Fully parallel impact time

[[] oversubseribed cruise lime
|:| Oversubscribed blocking time
B oversubscribed impact time
D Overhead lime

ey
w0 5 B

Critical

hs

Profile

imeline

Backup screen shot: The Thread Profiler Feature

Concurrency Level

Concurrency Level hread Profiler .3 (TP: lab2.exe)| ' " SourceStack
In, Out Source Stack

In Source Stack |
In, Out Source Stack | I @ @ Mext Source Stack ‘
Mext Source Stack | A ' Mext, Out Source Stack
Mext, Qut Zoursee | —l &“F'ﬂ ﬂm"la“ﬂiﬂi

v Object Ohject Type ‘
Object Type ‘ Cut Source Stack .

Out Source Stack Previous Source Stack D Serlal cruise time

Previous Source Stack N Source [[] serial blocking time

These two e [serial impact time
[[] undersubseribed cruise time

th read S [undersubscribed blacking time

[Undersubscribed impact time
[] Fully paraliel cruise time
. [[] Fully parallel blacking time
’_‘ ’—‘ i i [] Fully parallel impact time
: _ _ _ _ [[] oversubscribed cruise time
. i U U ' : : [[] oversubscribed blocking time

- i I~ P B oversubscribed impact time

Crcal Section 15/ . Are L] overhead time
CP:1, AR:1 |mpacted
B by this]

Critical Mghs Profile_ #imeline | Transition Source 0 | ObjeCt [

Mo thread, blocking tima

B
i
z
E=1

Backup screen shot: The Thread Profiler Feature

Timelineview

TPLab2.cpp | Threa

O, 0 @ |401.77%¢

1:Thread | | Thread activity

2 : Thread n . . . Active or unknown

jmwf"?‘ " Source View : : it D Inactive

3: Thread | | INRIEIEEEE
v Display Fork/Jain lines i ' Critical Path

mm Cruise

mm Impact

IS WUDIAL T SIS LIS 4 g 20U 15

mmm Blocking
Owverhead

Threads
o Fork
mf- Jain

03464 03466 0368 0347 03472 03474 03476 03478 0348 03482 03484 03436 03483
Time (seconds)
1 |

Critical Paths | Profi®) Timeline

Challenges Unique to Threading

Performance Penaity: Synchronization

» Thread blocked waiting for Mutex
—Thread not running, so no parallelism

* Mutex Release, Acquire takes time
—Release marks mutex free

—Acquire must check for free
— |f:free, mark as in use

—If not free, thread put to sleep
— Costs context switch out and in of processor

Create private copies of frequently accessed
data to reduce required synchronization
intgl

