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* Threading: Why do we need it now?
— The Dual core future

* Challenges Unique to Threading
s Intel® Thread Checker product

— Features
— Demo
— How does it works?

* The Thread Profiler feature




Driving Parallelism

Computers/Chip

2004 2006*
55% HT Shipping Dual-Core | > 40% Dual-Core

100% HT Shipping Dual-Core | > 85% Dual/Multi-Core

Shipping Dual-Core '| > 70% Dual-Core

“Exiting 2006, we believe that over 40 percent of the
desktop product shipments will be dual core, over 80

percent of our server products will'lbe multi‘or dual A” CPU development

core, and over 70 percent of our mobile products will

be dual core as well. We are dedicating all of our on D uaI/Mu |ti—CO e

future product designs to: multi-core environments.
We have bet on this in terms of our software
environment, our ecosystem development, and our

a ey nectonpantformeisy - anigue Dual/Multi-Core
In'tel PAUL OTELLINI, IDF 7/2004 P rOdUCtS in a” Seg m eﬂts




Nexigeneration: Dial-Core: ltanium®
pleEessels

- NATIONAL CC
| ('EO(JRABEIC Eventually one billion
ﬁg\ transistors, or electronic
TeChp switches, may crowd a single
chip, 1,000 times more than

possible today.
Mational Geographic, 1982

Montecito

1.7B transistors

MNeset Cieneration — Monteciio
> Dual Core and Muliiinreaced
>3/ increase olaiforrn oandwiclin
rligner performance, lower power

245 Cacne







Efficiently Utilize Dual Cores

Dual-Core Systems

*One package with 2 cores

» Software impact
—2 Cores =» 2 processors
—2 Cores =» 2x resources

Use threads to exploit full
resources of dual core processors

intgl



Efficiently Utilize Dual Cores

Threanselmern

» OS creates process for
each program loaded

— Each process executes as a
separate thread

* Additional threads can be
created within the process

— Each thread has its own
Stack and Instruction Pointer

— All threads share code and
data

Process }

Data
Code

thread1()

thread?2
Stack

IP

Stack
IP

threadN,
Stack

IP




Efficiently Utilize Dual Cores

Threating sonware

*OpenMP” threads
—http://www.openmp-org/

*Windows” threads
—http://msdn.microsoft.com/

* POSIX” threads (pthreads)
—http://www.ieee.org/

If both cores fully busy, then 2x
speedup possible

intel *Other names and brands may be claimed as the property of others.



Challenges Unique to Threading

Gorrectness bug: Data Races

* Suppose: a=1, b=2

Thread Thread?2
X=a+b b=42

* What is value of x if:
— Threadi runs before Thread2? | x =3
— Thread2 runs before Thread1? |x = 43

» Data race: concurrent read, modify, write of
same address

Outcome depends on thread execution order

intgl 10




Challenges Unique to Threading

Solvinyg Data Races: Synciironization

Gh readi ) /Th read?2 R

Acquire(L) Acquire(L)
a=1 b=42

b=2 Release(L)
X=a+b \ /

\Release(L)j

* Acquisition of mutex L ensures atomic access
— Only one thread can hold lock at a time
» Example APIs:

- EnterCriticalSection(), LeaveCtriticalSection()
- pthread_mutex _lock(), pthread mutex_unlock()

intgl




Efficiently Utilize Dual Cores

Amnani’s Law

e If only 1/2 of the -

code is parallel, .
2X speedup is P = parallel portion of process

unlikely y N = number of processors (cores)
O = parallel overhead




Challenges Unique to Threading

Threads Intro New Glass of Problems

¢ Correctness bugs

— Data races

_ Deadlock Intel® Thread Checker
finds correctness bugs
—and more...

* Performance bottlenecks
— Overhead
— Load balance
—and more...

Thread Profiler feature
pinpoints bottlenecks

Intel® Threading Tools can help!

intgl




Intel® Threading Tools

Intel® Thread Gheckerintro

*ldentifies threading bugs in
applications threaded with:

— Microsoft®™ Windows™ threads on Microsoft™
Windows” systems

— POSIX* pthreads on Linux* systems
— OpenMP” on Microsoft* Windows* and Linux*
systems
*Plugs into VTune™ environment
— Microsoft® Windows” for |A-32 systems
— Linux” for I1A-32 and ltanium®-based systems

intel *Other names and brands may be claimed as the property of others.




Intel® Threading Tools

Intel® Thread Checker Analysis

* Dynamic monitoring as software runs
—Data (workload) -driven execution

*Includes monitoring of:
— Thread and Sync APIs used

—Thread execution order
— Scheduler impacts results

—Memory accesses between threads

Only executed code path is analyzed




Intél® Threaid GChecker 2.0

Features

* Locates threading bugs:
— Data races (storage conflicts)

— Deadlocks (potential and actual)
— Win32 threading APl usage problems

— Memory leaks and overwrites

* Isolates bugs to source code line

* Describes possible causes of errors and
suggests resolutions

. Categorizes errors by severity level

intgl




Screen shot: Intel® Thread Checker

DIagnostcsList

kemon write of dSum at "Picpp' : 23 conflictz with a prior memorny read dSum at ‘ 1501 ‘ B ‘ d5um

"Pi.cpp” : 23 [anti dependence]
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Memomn read of dSum at "Piopp’' : 23 conflicts with a prior memony write of dSum at 15M1 | FiFunc
"Pi.cpp” : 23 [flow dependence]

Verbose diagnostics

P23 1 MPEA0S DL AEXPICIE | NTEa0ngiH |1 swinaows\Pi\Del Lg\threadchecker. thr: ..D-iagnnsii.cs

..:

= Tatal

dSum

EE] Group 1 : "Picpp’: 12

"Pi.cpp: 12 1] ite -+ Fead da

| "Picpp™: 12 1] Read - ‘Wiite data 1501 | PiFunc

|"F'i.|:|:||:|": 12 2| “wite -> Fead datatace | 1501| PiFunc

"Pi.cpp: 12 3! WTIkE - WWihe data-race daLm

Group 2 : Whole Program 1

Whale Program 1 | 4! . Thread termination Lk noven

Group 3 : Whole Program 2

Whale Program 2 | 5! . Thread termination Lk noven

Group 4 : Whole Program 3

1] 1 2

Whale Program 3 | E! . Thread termination Lk noven

Group 5 : Whole Program 4

Unclassified . Error

Whale Program 4 | ?'! . Thread termination Lk noven

Warning Caution

| Group & : *Whale Program 5

. Infarmational Remark

Diagnostics List
in Terse mode

Summary
and legend



Screen shot: Intel® Thread Checker

source GoreView

Each Diagnostics in
List links to its
source code line(s)

gtart = wpwThresdim+l ;

Tfar |inc 1 = STaET; = 1+=maAThtrexdal
1
dx = {i-0.5)

AEYR T

return myTheeadium ; fS thresd =xit code
## PiFunc




Screen shot: Intel® Thread Checker
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Intel® Threading Tools

Intel® ThreadGheckerbemo

Find threading bugs faster




Thesecrets hehind the tool

* Automatic application instrumentation

— Binary instrumentation — VTune™ analyzer
technology

— Source instrumentation — Compiler technology
* Semantic replacement of Threading functions

— Observe thread management and synchronization

— Observe system functions which modify
arguments

o Partial order of threads drives analysis
* Execution generates annotated address trace

* Produce error diagnhostics in a single
execution

intgl




* Threads maintain an integer clock

* Objects (Thread & Sync) have a time vector
—T#1=10,0 ]
—Vector length is the number of threads

—Hold partial order relationship between
objects

* Memory has a shadow cell
—X=(T#,0)
—Record last accesses ( thread id and time )

* The Max function Is used to merge the vectors
—Merge( [A,B], [C,D] )=[ Max(A,C), Max(B,D) ]

intgl




Actions

« ACQUIRE sync action (e.g. LOCK API)
—The lock isimerged with the thread
—The thread is advanced

« RELEASE sync action (e.g. UNLOCK API)
—The thread is advanced

—The thread is merged with the lock

+ ACCESS memory action (e.g- READ/ WRITE)
—Check shadow cell for conflict
—Updated shadow cell with threads info

intgl




Thread#1

Lock(L)
X=3

Unlock(L)

Thread#2

Lock(L)

X=X+1

D Unlock(L)

Start: T#1 =[1,0]; T#2=[0,1];L=1[0,0]; X=( )

T#1 = [2,0]

compare with T#1=[2,0] : FIRST ACCESS
X=(T#1,2)

T#1 =[3,0]; L = [3,0]

T#2 = [3,2]

compare X=( T#1, 2 ) with T#2=[3,2] : OK
X=(T#2,2)

T#2 =[3,3]; L = [3,3]

compare X=( T#2 , 2 ) with T#1 [3,0] :
X=(T#1,3)




Intel® Threading Tools

“Intel® Thread Checker helped Siemens by identifying issues
In software we develop and' in software we purchase from
third parties. We use Intel Thread Checker to improve the
quality of our software and look forward to expanding the use
of the tool in-more of our software development groups.”

-Andreas Dietrich, Research and Development Image Processing, Siemens Medical Solutions

“Using Intel Thread Checker we discovered two elusive bugs on
the very first day, as well as numerous inconsistencies and
opportunities: for performance improvement. We were pleasantly
surprised because our product, AcuSolve*, has been running
successfully on multiple platforms for many years. We have
how incorporated it in our basic development and release
PrOCess.” -Farzin Shakib, President ACUSIM Software, Inc.

*Other names and brands may be claimed as the property of others.




Intel® Threading Tools

Ihe Threat Pronierreatire

* Pinpoints threading performance
bottlenecks in apps threaded with:

—Microsoft® Windows™ threads on
Microsoft® Windows™ systems

—POSIX* pthreads on Linux* systems

— OpenMP”* on Microsoft* Windows* and
Linux™ systems

*Plugs into VTune™ environment
—Microsoft®* Windows” for |IA-32 systems
—Linux” for 1A-32 systems

intel *Other names and brands may be claimed as the property of others.




Intel® Threading Tools

Ihread Pronierkeatire Analysis

* Monitors execution flows to find
Critical Path

—Longest execution flow is the Critical Path
* Analyzes Critical Path

—System utilization
— Over-subscribed vs. under-subscribed

— I'hread state transitions
— Blocked -> Running
» Captures threads timeline
—Visualize threading structure

intgl




Intel® Threading Tools

Threan Pronier Griiical Path

Analysis shown for 2-way system
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Start with the
critical path

Separate according
to system utilization

Add overhead

Further analyze by
thread state
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Summary

EXploiting DualiGore Systems:
Inhe intel® Threading Tools

* Add threads to realize full performance
benefits of multi cores

* |Intel® Threading Tools can help:
— Intel® Thread Checker finds threading bugs
— Thread Profiler pinpoints threading bottlenecks

Intel® Threading Tools shortens
development cycle for threaded apps

29







*Intel® Threading Tools
http://www.intel.com/software/products/

*OpenMP” threads
— http://www.openmp.org/

*Windows™ threads
— http://msdn.microsoft.com/

*POSIX* threads (pthreads)
— http://www.ieee.org/

in-tel *Other names and brands may be claimed as the property of others.




. A comprehensive source of information on tools and techniques
for developers of software for dual core systems

— “Programming with Hyper-Threading Technology™
How.to Write Multithreaded Software for Intel® 1A-32 Processors
Richard Gerber and Andrew Binstock, ISBN 0-9717861-4-3

» More infol at www.intel.com/intelpress

Purchase Intel Press books:

* IDF bookstore

(20% discount
during the conference)

» Shopintel.com
* Amazon.com

intgl




Acronyms
* Pthreads: POSIX* threads

in-tel *Other names and brands may be claimed as the property of others.




Backup screen shot: The Thread Profiler Feature
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Backup screen shot: The Thread Profiler Feature
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Backup screen shot: The Thread Profiler Feature

Proiiie Views: Inreats View
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Backup screen shot: The Thread Profiler Feature
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Backup screen shot: The Thread Profiler Feature

Timelineview
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Challenges Unique to Threading

Performance Penaity: Synchronization

» Thread blocked waiting for Mutex
—Thread not running, so no parallelism

* Mutex Release, Acquire takes time
—Release marks mutex free

—Acquire must check for free
— |f:free, mark as in use

—If not free, thread put to sleep
— Costs context switch out and in of processor

Create private copies of frequently accessed
data to reduce required synchronization
intgl




