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Our Real Life Motivation 

� Project:  A file system project
� Stage: Component test
� Observed behavior: "Use-count" values corrupted during stress test
� Time wasted: Several calendar months, more than 0.5 PY
� Main difficulty: Failure was not repeatable
� Fault description: Incorrect use of compare-and-swap result
� Bug should have been found during the unit test!
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Testing Concurrent and Distributed Applications
Why is Concurrent Testing Hard?

� Concurrency introduces non-determinism
�Multiple executions of the same test may have different interleaving 

(and different results!)
�an interleaving is the relative execution order of the program threads

� Re-executing a test on a single stand-alone processor is not useful
� Debugging affects the timing
� No useful coverage measures for the interleaving space
� Result: Most bugs are found in system tests, stress tests, or by the 

customer
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Stages

� Review
� A methodology
� We teach a tutorial
� Hands-on on two inspection methodologies

� Unit test
� A tool and methodology
� We teach how to do it
� We supply the tools with which it is done

� Function and system test enhancements
� More tool then methodology
� Increases testing effectiveness
� Helps in coverage, debugging, replay
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General PR for Reviews

� I really shouldn’t need to be saying it but
� Great ROI 
� Finding bugs early 
� Save time and reduce cost
� Help individual learning
� Build effective teams
� Help retentions
� Education
� Tester programmer communication
� ….

� So is it done?
� Expensive, boring, author protection, “no time”…
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Traditional Review is for Sequential Code

� Formal review is mainly a homework assignment
� The assumption is that it can be done without the owner

� Walkthrough depends only on inputs not on interleaving
� Concurrent bugs tend to be distributed   �

� Looking at a small piece of code may miss them
� Protocols has to be looked at as a whole

� Specific bug patterns are to be looked for
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Review Methodology

� Overall system review 
� Automatic identification of relevant classes (files)

� Synchronization protocol review
� Concurrent bug pattern based review

� Using a check list

� Interleaving Review Technique - IRT
� Review interleavings
� Obtain test selection as a side effects
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Overall System Review

� A design problem:
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Bug Pattern Example: Lost-Notify 

� Losing notify: the notify is “lost” because it occurs before the thread 
executes the wait() primitive
�The gap was created because the programmer didn’t think the notify 

would occur before the wait  

Thread 1                                                Thread 2
synchronized (o){

o.notifyAll();
}

Synchronized (o){                                  
o.wait();                                                     

}
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Interleaving Review Technique

� The use of the Cartesian product technique to select interleavings and 
states to review 

� Definition of review roles and guideline to carrying out the roles
�Program counter – needs to thoroughly understand the system so he 

can determine the control flow 
�Devil’s advocate – experienced in concurrent and fault tolerance 

systems.  His role is to make choices as to the timing of events and 
failures 
�To maximize the probability that a bug is found
�IRT provides guidelines for making these choices

�Stenographer – experienced in representation techniques (use 
cases, sequential diagram, time diagrams, etc) and able to strike a 
trade-off between accuracy and readability
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Adoption

� Tried successfully by projects in IBM 
� Found additional problems in reviewed code each time used
� Small extra effort
� “We believe that this technique should be used wherever multi 

threaded code is being developed.  It significantly reduces the 
number of concurrency related bugs, and promotes quality.”

� Adopted for use in all new code developed 
� Developers see the benefit
� Learning curve is fast

� On average a bug per person-hour is found!!!
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Unit Test

� Test execution with ConTest  
� repeat until 100% synchronization coverage is obtained

� Class abstraction and wrapping
� Use test selection of the IRT stage and the multiplication 

technique
� Run many times

� You can remove most of these bugs in unit test!
� Currently they are found mostly by the customer…
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Impact on Function and System Test

� Negligible change to process
� Installed in big IBM projects in a day

� Increase efficiency in finding bugs
� Additional benefits

� Coverage measurements  (the tool of choice in Java)
� Aids in debugging
� Replay feature



IBM Labs in Haifa

© 2004 IBM Corporation14 ConTest/IRT  09/04

How Does ConTest Find Bugs?How Does ConTest Find Bugs?

� We instrument every concurrent event
� Concurrent events are the events whose order determines the 

result of the program 
� At every concurrent event, a random based decision is made whether to 

cause a context switch
� For example, using a sleep statement

� Philosophy:
� Modify the program in such a way that it will be more likely to exhibit

bugs (without introducing new bugs)
� Minimize impact on the testing process (under the hood technology)
� Re-use existing tests
� Utilize idle computer time
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ConTest OverviewConTest Overview

� ConTest is composed of the following components
� An instrumentation engine that

� Creates hooks for the irritator and for coverage printing
� Generates coverage models 
� Instrumentation is done at the bytecode level

� An irritator that randomly, or using heuristics, generates 
new interleaving on-the-fly

� Replay component
� Coverage component 
� Debugging aids
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User Scenario Without ConTestUser Scenario Without ConTest

Run Test
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Check
results

ProblemCorrect
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User Scenario With ConTestUser Scenario With ConTest

Check 
results

Run test with interleaving 
decided by heuristic
Record interleaving
Update coverage
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coverage 

target

Fix bug
Rerun test with 

replay 
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Finish
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ConTest - Status

� Status
�Widely used internal IBM tool
�Prototype for C/C++
�Fault injection to simulate network traffic
�Used both by developers and testers
�Based on a extensive research (14 papers, 6 patents)
�Eclipse plug-in available
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ConTest/IRT Benefits

� IRT
� Design and code review method for concurrency related defects 
� Helps in test plan design
� Impacts RAS and general product quality

� ConTest
� Improves testing concurrent and distributed applications for timing 

related bugs from early development stages
� Minimum impact on the testing process (under the hood technology)
� Re-use existing tests

� IRT in conjunction with ConTest is a complete light-weight concurrent 
development methodology


