
IBM Labs in Haifa © 2004 IBM Corporation

ConTest Intermittent Bugs Removal Process

Eitan Farchi
December 22, 2004

http://www.haifa.il.ibm.com/projects/verification/contest/index.html

IBM Labs in Haifa

© 2004 IBM Corporation2 ConTest/IRT 09/04

Our Real Life Motivation

� Project: A file system project
� Stage: Component test
� Observed behavior: "Use-count" values corrupted during stress test
� Time wasted: Several calendar months, more than 0.5 PY
� Main difficulty: Failure was not repeatable
� Fault description: Incorrect use of compare-and-swap result
� Bug should have been found during the unit test!

IBM Labs in Haifa

© 2004 IBM Corporation3 ConTest/IRT 09/04

Testing Concurrent and Distributed Applications
Why is Concurrent Testing Hard?

� Concurrency introduces non-determinism
�Multiple executions of the same test may have different interleaving

(and different results!)
�an interleaving is the relative execution order of the program threads

� Re-executing a test on a single stand-alone processor is not useful
� Debugging affects the timing
� No useful coverage measures for the interleaving space
� Result: Most bugs are found in system tests, stress tests, or by the

customer

IBM Labs in Haifa

© 2004 IBM Corporation4 ConTest/IRT 09/04

Stages

� Review
� A methodology
� We teach a tutorial
� Hands-on on two inspection methodologies

� Unit test
� A tool and methodology
� We teach how to do it
� We supply the tools with which it is done

� Function and system test enhancements
� More tool then methodology
� Increases testing effectiveness
� Helps in coverage, debugging, replay

IBM Labs in Haifa

© 2004 IBM Corporation5 ConTest/IRT 09/04

General PR for Reviews

� I really shouldn’t need to be saying it but
� Great ROI
� Finding bugs early
� Save time and reduce cost
� Help individual learning
� Build effective teams
� Help retentions
� Education
� Tester programmer communication
� ….

� So is it done?
� Expensive, boring, author protection, “no time”…

IBM Labs in Haifa

© 2004 IBM Corporation6 ConTest/IRT 09/04

Traditional Review is for Sequential Code

� Formal review is mainly a homework assignment
� The assumption is that it can be done without the owner

� Walkthrough depends only on inputs not on interleaving
� Concurrent bugs tend to be distributed �

� Looking at a small piece of code may miss them
� Protocols has to be looked at as a whole

� Specific bug patterns are to be looked for

IBM Labs in Haifa

© 2004 IBM Corporation7 ConTest/IRT 09/04

Review Methodology

� Overall system review
� Automatic identification of relevant classes (files)

� Synchronization protocol review
� Concurrent bug pattern based review

� Using a check list

� Interleaving Review Technique - IRT
� Review interleavings
� Obtain test selection as a side effects

IBM Labs in Haifa

© 2004 IBM Corporation8 ConTest/IRT 09/04

Overall System Review

� A design problem:

IBM Labs in Haifa

© 2004 IBM Corporation9 ConTest/IRT 09/04

Bug Pattern Example: Lost-Notify

� Losing notify: the notify is “lost” because it occurs before the thread
executes the wait() primitive
�The gap was created because the programmer didn’t think the notify

would occur before the wait

Thread 1 Thread 2
synchronized (o){

o.notifyAll();
}

Synchronized (o){
o.wait();

}

IBM Labs in Haifa

© 2004 IBM Corporation10 ConTest/IRT 09/04

Interleaving Review Technique

� The use of the Cartesian product technique to select interleavings and
states to review

� Definition of review roles and guideline to carrying out the roles
�Program counter – needs to thoroughly understand the system so he

can determine the control flow
�Devil’s advocate – experienced in concurrent and fault tolerance

systems. His role is to make choices as to the timing of events and
failures
�To maximize the probability that a bug is found
�IRT provides guidelines for making these choices

�Stenographer – experienced in representation techniques (use
cases, sequential diagram, time diagrams, etc) and able to strike a
trade-off between accuracy and readability

IBM Labs in Haifa

© 2004 IBM Corporation11 ConTest/IRT 09/04

Adoption

� Tried successfully by projects in IBM
� Found additional problems in reviewed code each time used
� Small extra effort
� “We believe that this technique should be used wherever multi

threaded code is being developed. It significantly reduces the
number of concurrency related bugs, and promotes quality.”

� Adopted for use in all new code developed
� Developers see the benefit
� Learning curve is fast

� On average a bug per person-hour is found!!!

IBM Labs in Haifa

© 2004 IBM Corporation12 ConTest/IRT 09/04

Unit Test

� Test execution with ConTest
� repeat until 100% synchronization coverage is obtained

� Class abstraction and wrapping
� Use test selection of the IRT stage and the multiplication

technique
� Run many times

� You can remove most of these bugs in unit test!
� Currently they are found mostly by the customer…

IBM Labs in Haifa

© 2004 IBM Corporation13 ConTest/IRT 09/04

Impact on Function and System Test

� Negligible change to process
� Installed in big IBM projects in a day

� Increase efficiency in finding bugs
� Additional benefits

� Coverage measurements (the tool of choice in Java)
� Aids in debugging
� Replay feature

IBM Labs in Haifa

© 2004 IBM Corporation14 ConTest/IRT 09/04

How Does ConTest Find Bugs?How Does ConTest Find Bugs?

� We instrument every concurrent event
� Concurrent events are the events whose order determines the

result of the program
� At every concurrent event, a random based decision is made whether to

cause a context switch
� For example, using a sleep statement

� Philosophy:
� Modify the program in such a way that it will be more likely to exhibit

bugs (without introducing new bugs)
� Minimize impact on the testing process (under the hood technology)
� Re-use existing tests
� Utilize idle computer time

IBM Labs in Haifa

© 2004 IBM Corporation15 ConTest/IRT 09/04

ConTest OverviewConTest Overview

� ConTest is composed of the following components
� An instrumentation engine that

� Creates hooks for the irritator and for coverage printing
� Generates coverage models
� Instrumentation is done at the bytecode level

� An irritator that randomly, or using heuristics, generates
new interleaving on-the-fly

� Replay component
� Coverage component
� Debugging aids

IBM Labs in Haifa

© 2004 IBM Corporation16 ConTest/IRT 09/04

User Scenario Without ConTestUser Scenario Without ConTest

Run Test

Fix bugFinish

Check
results

ProblemCorrect

IBM Labs in Haifa

© 2004 IBM Corporation17 ConTest/IRT 09/04

User Scenario With ConTestUser Scenario With ConTest

Check
results

Run test with interleaving
decided by heuristic
Record interleaving
Update coverage

Check
coverage

target

Fix bug
Rerun test with

replay
information
Orange box
Deadlock

Problem

Correct

Not Reached

Finish

Reached

IBM Labs in Haifa

© 2004 IBM Corporation18 ConTest/IRT 09/04

ConTest - Status

� Status
�Widely used internal IBM tool
�Prototype for C/C++
�Fault injection to simulate network traffic
�Used both by developers and testers
�Based on a extensive research (14 papers, 6 patents)
�Eclipse plug-in available

IBM Labs in Haifa

© 2004 IBM Corporation19 ConTest/IRT 09/04

ConTest/IRT Benefits

� IRT
� Design and code review method for concurrency related defects
� Helps in test plan design
� Impacts RAS and general product quality

� ConTest
� Improves testing concurrent and distributed applications for timing

related bugs from early development stages
� Minimum impact on the testing process (under the hood technology)
� Re-use existing tests

� IRT in conjunction with ConTest is a complete light-weight concurrent
development methodology

