Scaling Model Checking of Dataraces
Using

Dynamic Information

Ohad Shacham
Tel Aviv University and IBM

Mooly Sagiv Assaf Schuster
Tel Aviv University Technion

Datarace

= Happens when two threads access a memory
location concurrently
= At least one access is a write

= Unpredictable results
= Can indicate bugs

= Hard to detect

= Hard to reproduce

Datarace example

TicketPurchase(NumOfTickets)
{
if (NumOfTickets = FreeTickets)
FreeTickets -= NumOfTickets
else
Print “Full”;

Datarace example

{FreeTickets = 4}
Thread | Thread 11

TicketPurchase(2)
if (NumOfTickets = FreeTickets)
TicketPurchase(4)

if (NumOfTickets = FreeTickets)

FreeTickets -= NumOfTickets
FreeTickets -= NumOfTickets

{FreeTickets = -2}

Datarace example

TicketPurchase(NumOfTickets)
{
Lock(|0CkFreeTicket5)
if (NumOfTickets = FreeTickets)
FreeTickets -= NumOfTickets
else
Print “Full”;
Un|ock(|0CkFreeTickets)

}

Therac 25

= A medical radiation machine to treat cancer
= 6 patients got a radiation overdose

= 4 died
= 2 injured

Room Motion
emergency power switch
™V switches \\
camera —____|
Beam

on/off light ~__|

Door
interlock
switch

Room
emergency
switch

Display
terminal

Motion enable
switch (footswitch)

Control
console

Therapy room
intercom

Therac-25 unit

Treatment table

Turntable
position
monitor

Datarace detection

= Static datarace detection tools
= Racex
= I'CCjava
= Dynamic datarace detection tools:
= Lamport’s happens-before partial order
(Djit)
= Lock based techniques (Lockset)

Difficulties in model checking
dataraces

= Infinite state space

= Huge number of interleavings
= Huge transition systems

= Size problem

Observation

Dataraces free programs maintain
a locking discipline

Hybrid solution

= Dynamically check the locking discipline

= Produce witnesses for dataraces using a
model checker

= Explore suffixes of the trace

Basic 1dea

—
o —

Algorithm flow

Multithreaded program
w

R
Lockset Warnings

Lockset Invariant

Multiple accesses to a specific
memory location are guarded by a

unique lock

Lockset example

Thread |
Lock(lockX) f
X =7 {lock*}
Unlock(lock)
Lock(lockY) f
/=Y {lock¥}
Unlock(lockY)

Thread 11 C(X)

{lock*, lockY}
{lock*}

Lock(lockY) f
Y =2 {|0Cky}
Unlock(locky)

Lock(lockY) f
Y =X {lockY} f

Lockset

= Advantage

= Predict dataraces which may occur in a
different thread interleaving

= Disadvantages
= Spurious dataraces

=« Hard to use
= Lack of trace

Lockset strength

Thread |
Lock(lock®); f
X=7: {lock*}
Unlock(lock®);
Lock(lockY); f
Z=Y; {lock¥}
Unlock(lockY);

Thread 11 C(X)

{lock*, lockY}
{lock*}

Lock(lockY); f

Y =2; {locky}
Unlock(lockY);

Lock(lockY); f

Y=X; {lockY} f

Our solution

= Combine Lockset & Model Checking

= Provide withesses for dataraces
= Rare dataraces
= Dataraces in large programs

Model Checking Lockset
Provide witnesses for rare DR + scale for large programs

A witness for a datarace

Thread | Thread |1
— Py
i __
a;

mal = ma2

a,=Write ? a,=Write

Required data from Lockset

Thread | Thread I1

Using Lockset data

= Lockset provides for each warning only a single
access event a,

= Find a prior access event a, which can take part in a
race with a,

Using Lockset data

{lock*}
{lock¥}
{lock¥}

{lock¥}

A Warning on X

Prefix

——— - - ——
P
-
p——
-———
<
——— - - ——— —
e
p—
J——
-
-
-
‘———_———_’
———
———
S~

-—
—_——
_— e e
—_——

Building a model

Using a model checker

Is a, reachable by ta2 ?
Py

sal D

Using a model checker

Py

—

N
X

P

&< o -
-
==
‘ﬁ
-
"'
<

Reduce the model checker cost

s Reduction in the model size
= Elimination of thread ta1

= Providing a single new Initial
configuration
= Heuristically reducing the number of

steps that the model checker should
carry out

Example

Thread | Thread 11 c(X)
Py { Lock(lockX); f {lock*, lockY}
X=1; {lock*} {lock*}
Unlock(lock*); N
Lock(lockY); f Lock(lockY);
Z=Y: flocky Y =2
Unlock(lockY); Unlock(lockY); [P2
Lock(lockY);
Y = X, J
X=7,; Lock(lockY);
Y =2; {lock’}
Unlock(lockY);

Lock(lockY); f
Y =X; {lock¥} f

Prototype implementation

= A prototype tool based on IBM tools
= Lockset — The IBM Watson tool

= Wolf — IBM Haifa’'s software model
checker

Prototype implementation

Multi-threaded program
v

List of
Lockset %

Warnings

— Eendp | worr |
' !

P1 P,

Benchmark programs

Program Description Lines

TSp traveling salesman from 700
ETH

Our_tsp Enhanced traveling 708

— salesman

mtrt Multithreaded raytracer 3751
from specjvm98

Hedc Web Crawler Kernel from 299048
ETH

SortArray Parallel sort 362

PrimeFinder Finds prime numbersina | 129
given interval

Elevsim Elevator simulator 150

DQueries Shared DB simulator 166

Experimental results

Program 2 threads |3 threads 4 threads
Time | Memory | Time Memory | Time Memory
(sec) | (MB) (sec) (MB) (sec) (MB)
our_tsp 35069 Mem Out Mem Out
SortArray 569.3 | 123 1334.93 | 396 Mem Out
PrimeFinder 888.7 | 116 2645.5 | 143 4547.1 | 168
ElevSim 33.02 67.92 33 147.9 48
DQueries 140.1 | 60 201.8 89 585.97 | 136
Hedc 2.66 |11 7.33 12 9 17
tsp 35243 | 377 Mem Out Mem Out

Conclusion

= Hybrid technique which combines
dynamic datarace detector and a model
checker

s Provide witnesses for dataraces which
occur only In rare interleavings

= Helps the user in analyzing the datarace
= NO spurious dataraces

