
Aspects and Verification:
Challenges and Opportunities

Shmuel Katz
Computer Science Department

The Technion
katz@cs.technion.ac.il

Topics

n What is an aspect?
n What are they good for in general?
n How can they help us test/debug/log?
n But are the aspects themselves correct?

n How to specify
n Kinds of aspects and properties
n Approaches to verification

Aspects (and esp. AspectJ)
n Aspects: modular units that crosscut classes
n Aspects are defined by aspect declarations

and may include
n pointcut declarations: where to add/replace
n advice declarations: what to add or do instead
n Can introduce new methods, variables, code…

n Weave (=bind) aspect to different systems
(but not entirely separated yet…)

Pointcuts
n A program element that identifies join points

n Denotes a (possibly empty) set of join points
n kind of join point
n signature of join point
n Can be dynamic (calls within a context, look at stack)

call(void Line.setP1(Point))

Denotes the set of method call join points with this signature

primitive pointcut
signature

Advice
n Additional action to take at join points

n Defined in terms of pointcuts
n The code of a piece of advice runs at every join

point picked out by its pointcut

pointcut move() :
call(void Line.setP1(Point)) ||
call(void Line.setP2(Point));

after() returning : move() {
< code here runs after completion of

each join point denoted by move >
}

advice type pointcut

advice body

parameters

Advantages of aspects
n A system concern is treated in one place,

and can be easily changed
n Evolving requirements can be added easily

with minimal changes to previous version
n Configurable components become practical

(“On demand computing”)
n Reuse of code that cuts across usual class

hierarchy to augment system in many places

Modularity for Cross-cutting

n For distributed:
n Deadlock detection: is the system stuck?
n Monitoring: gathering information on messages
n Fault-tolerance: resending messages on new paths

n For Object Oriented
n Monitoring and debugging
n Adding security: Encode/decode messages
n Preventing overflow: Catch and correct when needed
n Enforcing a scheduling policy

n Analyzing QOS and Performance

The Opportunities
n Already used for logging and tracing values
n Can be used for evaluating tests
n Can be used to augment a system with

debug `assert` statements when needed
n Good for annotating (=marking up) a

system for input to analysis tools
n Formal Methods (software model checking)
n Simulation
n White-box test generation

Challenges

n How do we know the aspect itself is
correct?

n When is it applicable?
n What new properties does it add?
n What does it maintain from the old system?
n An aspect itself is not a program, and its

application should be `light weight`

Aspects as Subjects of
Investigation

n Syntax: how to express them?
n Classification: What types are there?

n Spectative: only observes/records
n Regulative: affects control/ termination
n Invasive: changes values of existing fields

n Specification: what do they add, to what?
n Correctness/validation: how do we know

they do what is intended?

Terminology

n Underlying or Original or Basic (system): the
system before an aspect has been woven

n Aspect: pointcut plus advice (where + what)
n Augmented (system): the result after

weaving in an aspect

Ideal Goal: verifying aspects

n Show once and for all that:
n For every possible underlying system

satisfying Assumptions of the Aspect,
n For any legal combination (weaving) of the

aspect and the underlying system,
n The New Functionality will be true for the

augmented system, and
n All previous desirable properties are still OK

The Problem: Impracticality

n Such a proof must be inductive
n No one really does inductive proofs for

arbitrary software using existing tools
n Requires generalizations hard to express on

every software architecture within a class, or
every weaving of a certain type

n Expressing the specification itself can be hard

Overcoming the Problem: Divide
and Conquer

n Cause no harm versus add desired properties
n Analyze just the aspect

n For every possible weaving and classes of
properties

n For a specific weaving and given properties
n Analyze the augmented system —

automatically after a manual one-time set-up
n Use static code analysis, restricted

inductions, and model checking ---as needed

Do aspects applied to an
original system cause harm?

n Assume the original system has a
specification of its essential properties

n Show that the aspects maintain those
properties (but can change others)

n Ignore the properties added by the
aspects—at least “Do No Harm”

n Limits the obliviousness of the system to
aspects applied over it; if “harm is caused”,
at least be aware of it.

Possible Approaches
n Regression testing
n Static code type analysis
n Verification using induction
n Model checking
Aspect code analysis: consider only the aspect

code, (a) for families of systems or (b) for
one instance

Augmented code analysis: consider the
combination of the original and the aspects

Why not regression testing?

n Aspects make many changes at many points
and can redirect control and results

n Entire computation paths/methods/fields are
not tested

n Inherently global, for augmented system,
and can demand excessive resources

Previous tests are often insufficient/irrelevant

Static aspect code analysis:
Example—spectative aspects

n If the binding of aspect code to a system is
only through explicit parameters, can see
that only aspect fields are modified, and
original control is unaffected (=spectative)

n Use data-flow techniques (define-use pairs)
n Thrm: For any original system, properties

only involving original fields, methods, are
not harmed by applying a spectative aspect.

n But: New method exposing a hidden value
could be even in a spectative aspect …

Another Example: Regulative
Aspects

n Can establish by code analysis that the
aspect can gather information, OR restrict
operations that were possible in the original

n Theorem: Safety properties are maintained,
but Liveness may be violated

n Examples:
n Access control (e.g., passwords) as an aspect
n Restrict choices to guarantee fair scheduling

Deductive verification for aspect
code: Invariant extension

n IF I is an invariant of the original system,
and is inductive, we can just show that

{I} t {I}
holds for each action t of the aspect code,

without considering when t is applied, and
conclude that I is an invariant of the entire
augmented system.
Useful example of aspect code analysis for a
particular application, using info on original.

Example of invariant extension
for a particular instance

n (x>y>0) is an invariant of some system
n An aspect has the form

<complex> à double (x,y)

Then check {x>y>0} double(x,y) {x>y>0}
and conclude (x>y>0) is an invariant of the
entire augmented system

(Note: no need to analyze <complex>)

Using Aspect Validation for
augmented system analysis

For situations where original system has been
proven correct for its specification using
software model checking (e.g., Bandera)

n Reprove for augmented system without new
manual setup (just push a button…)

n Reuse the specification and annotations,
given as verification aspects

n Treats all new paths/methods….
n In many cases uses the same abstractions

On Aspect Validation
n Show each application of an aspect over a

system is correct: “no harm” + new properties
n Still formal verification, but for each instance
n Key idea: set-up is manual, but then the proof

for each instance is automatic
n Proves that applications so far are correct
n First used for Compiler Validation [Pnueli,

Strichman,…]

Key ideas of Aspect Validation
n Use an existing software model checking tool
n Define collections of aspects, with specifications
n Use aspects themselves to express the

annotations to systems needed for various model
checking tasks (recall “opportunities”)

n Manual set-up is done once, then a sequence of
automatically generated tasks are done each
time the collection of aspects is woven into a
basic system.

What is model checking?
n Given a finite representation of a model (a

program), and an assertion about execution
paths in temporal logic, check whether the
assertion holds for every possible execution
path (even infinite ones!) and thus is a
property of the model

n Generate compact representations, use
clever algorithms to check, restrict assertion
language, use abstractions and reductions
to get smaller models, …

Software model checking
n Tool that allows annotating (Java) code, abstracting

domains, expressing properties to be checked
n Bandera (or others) generate input to existing tools

like SMV, Spin, …
n For proper abstractions, success means the checked

property holds for every execution
n Often ends with a counter-example
n Can fail due to state explosion, giving no info
n Algorithmic (except for finding abstractions)

Verification Aspects
n Annotations to be added to Applications of

Aspects over Original Systems
n For each Application Aspect, build 2 VA’s:

n Asm: Assumptions of the Application
n Res: Desired results of the Application

n Contain new fields, predicates,
directives…for the application aspect.

n For each Original system, need another VA:
n Spec: specification of the Original system

The Validation process
n Correctness of Original: Apply Spec to

Original, and activate model checker (done
earlier)

n Original is appropriate: Apply Asm to
Original, activate model checker

n Apply Application over Original giving A+B,
n No harm: Apply Spec to A+B, activate model

checker
n Achieves result: Apply Res to A+B, activate

model checker

When will this work?
n The bindings for the application are the same

as those needed for the verification aspects
n The abstraction for the spec. of the original

still works for the augmented
n One generic abstraction for the new aspect

properties works for many bindings to
different systems, and can be remembered

n Otherwise, the application is not automatic

Validation gives a practical
path to routine application

n Only expert needs to write annotations
(once)

n Practical limitations:
n Tools have arbitrary restrictions
n Need abstractions

n Counter-examples can find bugs
n The key: full modularization of the VA’s

allows automatic application

Some Interesting Goals

n Identifying classes of aspects + systems + properties
appropriate for static type analysis or inductive
proofs or model checking only for the aspect

n Analyzing when abstractions and reductions that
were effective for model checking the original system
and specification work for the augmented system

n Discovering generic abstractions and reductions that
can be reused to model check the augmented system
for new aspect properties

n Analyzing interference / cooperation among aspects

Conclusions
n Aspects are interesting

n New kind of modularity (cross-cutting)
n Potential for “on-demand” adaptation
n Relevant for all stages of software development

n Formal Methods for software are interesting
n Elegant applications of mathematics (logic)
n Software crisis in reliability, expensive debugging
n Tools are finally becoming practical

n Their combination has especially interesting
questions and is potentially useful and practical

Sources
n S. Katz, A Superimposition Control Structure for

Distributed Systems, TOPLAS, 1993.
n M. Sihman and S. Katz, A Calculus of Superimpositions

for Distributed Systems, AOSD 2002.
n M. Sihman and S. Katz, Superimpositions and Aspect-

Oriented Programming, The Computer Journal, 2003
n M. Sihman and S. Katz, Aspect Validation Using Model

Checking, LNCS 2772, 2003
n S. Katz, Diagnosis of Harmful Aspects Using

Regression Verification, FOAL workshop in AOSD 2004

