Aspects and Verification:

!'_ Challenges and Opportunities

Shmuel Katz
Computer Science Department
The Technion
katz@cs.technion.ac.il

Topics

= What Is an aspect?
= What are they good for in general?
= How can they help us test/debug/log?

= But are the aspects themselves correct?
= How to specify
= Kinds of aspects and properties
= Approaches to verification

Aspects (and esp. Aspectl))

= Aspects: modular units that crosscut classes

= Aspects are defined by aspect declarations
and may Iinclude

= pointcut declarations: where to add/replace
= advice declarations: what to add or do instead
= Can introduce new methods, variables, code...

= \Weave (=bind) aspect to different systems
(but not entirely separated yet...)

Pointcuts

= A program element that identifies join points

= Denotes a (possibly empty) set of join points
= kind of join point
= Signature of join point
= Can be dynamic (calls within a context, look at stack)

signature

primitive pointcut

cal | (voi d Line.setP1(Point))

Denotes the set of method call join points with this signature

Advice

= Additional action to take at join points
= Defined in terms of pointcuts

= The code of a piece of advice runs at every join
point picked out by its pointcut

poi ntcut nove()
call (void Line.setP1(Point)) ||
call (void Line.setP2(Point));

advice type parameters pointcut

after() returning : nove() {

< code here runs after completion of } advice body
each join point denoted by move >

Advantages of aspects

= A system concern is treated In one place,
and can be easily changed

= Evolving requirements can be added easily
with minimal changes to previous version

= Configurable components become practical
(*On demand computing”)

= Reuse of code that cuts across usual class
hierarchy to augment system in many places

Modularity for Cross-cutting

= For distributed:
= Deadlock detection: is the system stuck?
= Monitoring: gathering information on messages
= Fault-tolerance: resending messages on new paths

= For Object Oriented
= Monitoring and debugging
= Adding security: Encode/decode messages
= Preventing overflow: Catch and correct when needed
= Enforcing a scheduling policy

= Analyzing QOS and Performance

The Opportunities

= Already used for logging and tracing values
= Can be used for evaluating tests

= Can be used to augment a system with
debug assert statements when needed

= Good for annotating (=marking up) a
system for input to analysis tools

« Formal Methods (software model checking)
= Simulation
= White-box test generation

Challenges

= How do we know the aspect itself Is
correct?

= When is it applicable?
= What new properties does it add?
= What does it maintain from the old system?

= An aspect itself iIs not a program, and Its
application should be “light weight™

Aspects as Subjects of
Investigation

= Syntax: how to express them?

= Classification: What types are there?
= Spectative: only observes/records
= Regulative: affects control/ termination
= Invasive: changes values of existing fields

= Specification: what do they add, to what?

s Correctness/validation: how do we know
they do what Is intended?

Terminology

= Underlying or Original or Basic (system): the
system before an aspect has been woven

= Aspect: pointcut plus advice (where + what)

= Augmented (system): the result after
weaving In an aspect

ldeal Goal: verifying aspects

how once and for all that:

For every possible underlying system
satisfying Assumptions of the Aspect,

= For any legal combination (weaving) of the
aspect and the underlying system,

= The New Functionality will be true for the
augmented system, and

= All previous desirable properties are still OK

The Problem: Impracticality

= Such a proof must be inductive

= No one really does inductive proofs for
arbitrary software using existing tools

= Requires generalizations hard to express on
every software architecture within a class, or
every weaving of a certain type

= Expressing the specification itself can be hard

Overcoming the Problem: Divide
and Conquer

= Cause no harm versus add desired properties

= Analyze just the aspect

= For every possible weaving and classes of
properties

= For a specific weaving and given properties

= Analyze the augmented system
automatically after a manual one-time set-up

= Use static code analysis, restricted
Inductions, and model checking ---as needed

Do aspects applied to an
Loriginal system cause harm?

= Assume the original system has a
specification of its essential properties

= Show that the aspects maintain those
properties (but can change others)

= Ignore the properties added by the
aspects—at least “Do No Harm”

= Limits the obliviousness of the system to
aspects applied over it; if “harm Is caused”,
at least be aware of It.

Possible Approaches

= Regression testing

= Static code type analysis

= Verification using induction
= Model checking

Aspect code analysis: consider only the aspect
code, (a) for families of systems or (b) for
one instance

Augmented code analysis: consider the
combination of the original and the aspects

Why not regression testing?

= Aspects make many changes at many points
and can redirect control and results

= Entire computation paths/methods/fields are
not tested

= Inherently global, for augmented system,
and can demand excessive resources

Previous tests are often insufficient/irrelevant

Static aspect code analysis:
Example—spectative aspects

= If the binding of aspect code to a system Is
only through explicit parameters, can see
that only aspect fields are modified, and
original control Is unaffected (=spectative)

= Use data-flow technigues (define-use pairs)

= Thrm: For any original system, properties
only involving original fields, methods, are
not harmed by applying a spectative aspect.

= But: New method exposing a hidden value
could be even In a spectative aspect ...

Another Example: Regulative
Aspects

= Can establish by code analysis that the
aspect can gather information, OR restrict
operations that were possible in the original

= Theorem: Safety properties are maintained,
but Liveness may be violated

= Examples:
= Access control (e.g., passwords) as an aspect
= Restrict choices to guarantee fair scheduling

Deductive verification for aspect
code: Invariant extension

= IF | Is an invariant of the original system,
and Is inductive, we can just show that

{1} t {I}
holds for each action t of the aspect code,

without considering when t is applied, and

conclude that | 1s an invariant of the entire
augmented system.

Useful example of aspect code analysis for a
particular application, using info on original.

Example of invariant extension
for a particular instance

= (x>y>0) Is an invariant of some system
= An aspect has the form
<complex> -> double (Xx,y)

Then check {x>y>0} double(x,y) {x>y=>0}
and conclude (x>y=>0) is an invariant of the
entire augmented system

(Note: no need to analyze <complex>)

Using Aspect Validation for

augmented system analysis

Por situations where original system has been
proven correct for its specification using
software model checking (e.g., Bandera)

= Reprove for augmented system without new
manual setup (just push a button...)

= Reuse the specification and annotations,
given as verification aspects

= Treats all new paths/methods....
= In many cases uses the same abstractions

On Aspect Validation

= Show each application of an aspect over a
system Is correct: “no harm” + new properties

s Still formal verification, but for each instance

= Key idea: set-up is manual, but then the proof
for each instance Is automatic

= Proves that applications so far are correct

= First used for Compiler Validation [Pnueli,
Strichman,...]

Key Ideas of Aspect Validation

= Use an existing software model checking tool
= Define collections of aspects, with specifications

= Use aspects themselves to express the
annotations to systems needed for various model
checking tasks (recall “opportunities™)

= Manual set-up Is done once, then a sequence of
automatically generated tasks are done each
time the collection of aspects is woven Into a
basic system.

What Is model checking?

= Glven a finite representation of a model (a
program), and an assertion about execution
paths in temporal logic, check whether the
assertion holds for every possible execution
path (even infinite ones!) and thus is a
property of the model

= Generate compact representations, use
clever algorithms to check, restrict assertion
language, use abstractions and reductions
to get smaller models, ...

Software model checking

Tool that allows annotating (Java) code, abstracting
domains, expressing properties to be checked

Bandera (or others) generate input to existing tools
like SMV, Spin, ...

For proper abstractions, success means the checked
property holds for every execution

Often ends with a counter-example
Can fail due to state explosion, giving no info
Algorithmic (except for finding abstractions)

Verification Aspects

nnotations to be added to Applications of
Aspects over Original Systems

= For each Application Aspect, build 2 VA’s:
= Asm: Assumptions of the Application
= Res: Desired results of the Application

= Contain new fields, predicates,
directives...for the application aspect.

= For each Original system, need another VA:
= Spec: specification of the Original system

The Validation process

= Correctness of Original: Apply Spec to
Original, and activate model checker (done
earlier)

= Original is appropriate: Apply Asm to
Original, activate model checker

= Apply Application over Original giving A+B,
= No harm: Apply Spec to A+B, activate model

checker

= Achieves result: Apply Res to A+B, activate
model checker

When will this work?

= The bindings for the application are the same
as those needed for the verification aspects

= The abstraction for the spec. of the original
still works for the augmented

= One generic abstraction for the new aspect
properties works for many bindings to
different systems, and can be remembered

s Otherwise, the application is not automatic

Validation gives a practical
path to routine application

= Only expert needs to write annotations
(once)

s Practical limitations:
= T00ls have arbitrary restrictions
= Need abstractions

= Counter-examples can find bugs

= The key: full modularization of the VA's
allows automatic application

Some Interesting Goals

tifying classes of aspects + systems + properties
appropriate for static type analysis or inductive
proofs or model checking only for the aspect

= Analyzing when abstractions and reductions that
were effective for model checking the original system
and specification work for the augmented system

= Discovering generic abstractions and reductions that
can be reused to model check the augmented system
for new aspect properties

= Analyzing interference / cooperation among aspects

Conclusions

spects are interesting

= New kind of modularity (cross-cutting)

= Potential for “on-demand” adaptation

= Relevant for all stages of software development

= Formal Methods for software are interesting
= Elegant applications of mathematics (logic)

= Software crisis in reliability, expensive debugging
= Tools are finally becoming practical

= Their combination has especially interesting
guestions and is potentially useful and practical

Sources

S. Katz, A Superimposition Control Structure for
Distributed Systems, TOPLAS, 1993.

M. Sihman and S. Katz, A Calculus of Superimpositions
for Distributed Systems, AOSD 2002.

M. Sihman and S. Katz, Superimpositions and Aspect-
Oriented Programming, The Computer Journal, 2003

M. Sihman and S. Katz, Aspect Validation Using Model
Checking, LNCS 2772, 2003

S. Katz, Diagnosis of Harmful Aspects Using
Regression Verification, FOAL workshop in AOSD 2004

