
IBM Labs in Haifa © 2004 IBM Corporation

Multi Threaded Testing with AOP is Easy
And it Finds Bugs!

Shmuel Ur (ur@il.ibm.com)
Shady Copty (shady@il.ibm.com)
Software and Verification Technologies

IBM Labs in Haifa

2 IBM Labs in Haifa © 2004 IBM Corporation

Outline

� Noise making as a testing technique
� The ConTest testing tool
� AspectJ
� AOP based noise maker
� Results
� Other applications
� Conclusions

IBM Labs in Haifa

3 IBM Labs in Haifa © 2004 IBM Corporation

A Simple Java Example

� Function increase()

� Although written as a single “increment” operation,
the “++” operator is actually mapped into three JVM instructions [load
operand, increment, write-back]

public void
increase()
{

counter++;
}

IBM Labs in Haifa

4 IBM Labs in Haifa © 2004 IBM Corporation

A Simple Java Example - Continued

…

…

Write-back

Increment

Load operand

Thread A Thread B

counter = 34

…

…

Write-back

Increment

Load operand

Context Switch

IBM Labs in Haifa

5 IBM Labs in Haifa © 2004 IBM Corporation

A Simple Java Example – Noise Makers

Context Switch

…

…

Write-back

Increment

Load operand

Thread A Thread B

counter = 34

Context Switch

…

…

Write-back

Increment

Load operand

Context Switch

IBM Labs in Haifa

6 IBM Labs in Haifa © 2004 IBM Corporation

ConTest Overview

� ConTest is composed of the following components
� An instrumentation engine that

� Creates hooks for the irritator and for coverage printing
� Generates coverage models

� The instrumentation is done at the byte code level
� An irritator that randomly, or using heuristics, generates new

interleaving on-the-fly
� Seed replay component
� Coverage component
� Debugging aids

IBM Labs in Haifa

7 IBM Labs in Haifa © 2004 IBM Corporation

AspectJ by Example

public aspect Example {
pointcut IssueID():

call (int IDManager.NewID());

after(): IssueID() {
System.out.println(“Just gave a new ID”);

}
}

class IDManager{

public int NewID() { return ++_counter; }

private int _counter;

}

IBM Labs in Haifa

8 IBM Labs in Haifa © 2004 IBM Corporation

A more specific Aspect

public aspect Example2 {
pointcut ReadCounter():

get(int IDManager._counter);

after(): ReadCounter() {
System.out.println(“read the counter”);

}
}

class IDManager{

public int NewID() { return ++_counter; }

private int _counter;

}

IBM Labs in Haifa

9 IBM Labs in Haifa © 2004 IBM Corporation

A more general Aspect

public aspect Example3 {
pointcut AccessVariable():

(get(* *) || set(* *));

after(): AccessVariable() {
System.out.println(“accessed something”);

}
}

class IDManager{

public int NewID() { return ++_counter; }

private int _counter;

}

Your Application

public aspect Example4 extends Thread{
pointcut Noise():

(get(* *) || set (* *));

after(): Noise() {
try {
yield();
} catch (Exception e) {};

}
}

IBM Labs in Haifa

10 IBM Labs in Haifa © 2004 IBM Corporation

Woven bytecode

Context Switch

Context Switch

…

…

Write-back

Increment

Load operand
…

…

Write-back

Increment

Load operand

IBM Labs in Haifa

11 IBM Labs in Haifa © 2004 IBM Corporation

An AOP Testing Tool

public aspect SleepNoise extends Thread{
private static Random rand = new Random();

pointcut noiseVictem():
((get(* *) || set (* *))&& within(!SleepNoise));

after(): noiseVictem() {
try{// noise
if (rand.nextInt(100) == 1){ // activation

sleep(rand.nextInt(50)); // type
}

} catch (Exception e) {};
}

}

IBM Labs in Haifa

12 IBM Labs in Haifa © 2004 IBM Corporation

Experiment

� Several programs with documented bugs
� BubbleSort

� Assumed threads will finish in time and didn’t synchronize
� BubbleSort2

� Programmer sends new threads to sleep to initialize his data
structure

� IDManager
� non-atomic update of an ID counter

� DoubleLock
� Deadlock caused by different order of locking

IBM Labs in Haifa

13 IBM Labs in Haifa © 2004 IBM Corporation

Experiment - results

12 lines of

AspectJ code

IBM Labs in Haifa

14 IBM Labs in Haifa © 2004 IBM Corporation

Contest Instrumentation, AspectJ Falling Short?

� For Testing
� gets/sets for variables
� Concurrent related functions (sleep, yield, wait, …)
� Synchronization blocks

� In addition, for coverage
� Basic blocks
� Method calls

IBM Labs in Haifa

15 IBM Labs in Haifa © 2004 IBM Corporation

Tampering with Timeouts

public aspect SleepMutator extends Thread{
pointcut noiseVictem(long i):

call(void sleep(long)) && args(i) && within(!SleepMutator);

private static Random rand = new Random();
void around(long i): noiseVictem(i) {
try{

long newSleepTime = rand.nextInt((int)i*3); // [0,3*sleep]

if (rand.nextInt(5) == 1)
proceed(newSleepTime);

} catch (Exception e) {}
}

};

IBM Labs in Haifa

16 IBM Labs in Haifa © 2004 IBM Corporation

Tampering with UDP

public aspect UDP extends DatagramSocket
pointcut UDPNoise(DatagramPacket i):

call(void send(DatagramPacket)) && args(i) && within(!UDP);

private static Random rand = new Random();
void around(DatagramPacket i): UDPNoise (i) {

if (rand.nextInt(5) == 1)
proceed(i);
}

};

IBM Labs in Haifa

17 IBM Labs in Haifa © 2004 IBM Corporation

Coverage

� ConTest supports
� Method coverage
� Branch coverage
� Concurrent point coverage
� Interfered location pairs coverage
� Synchronization coverage

� 100% coverage?
� A new feature to AspectJ was added during our work

� - ShowWeaveInfo

IBM Labs in Haifa

18 IBM Labs in Haifa © 2004 IBM Corporation

Concluding Remarks

� AOP is suitable for multi threaded testing
� Finds bugs, extremely easy

� AspectJ as an open source instrumentor
� If something is missing it is easy to add

� Detailed study of implementing ConTest features in the paper
� Source code is available on our website

IBM Labs in Haifa

19 IBM Labs in Haifa © 2004 IBM Corporation

���������	

IBM Labs in Haifa

20 IBM Labs in Haifa © 2004 IBM Corporation

���������
���������

