Stae Code Analysis
Frecedures in the
Pevelopment Cycle

00IS,

eclinelegy; and Process in

Engineerngrariviicrosofi

Mooly Beer
Microsoft Haifa B&D: Center:

AGERGa

@ Static code analysis tools

® PREfix and PREfast

® |ntegration inte the development cycle
® Summary

A Product's Life Cycle

= Cost of fixing bugs
qx'&“ Dﬂ% = Plan & Design - no code bugs
1 (©)
= |[mplementation — Low cost,
just fix the code and check in

| 55'1"' = Stabilize — Medium cost, track
® &

. the bug, develop the ‘right” test
Stapiliz® case, etc.

= T [Ty E-
E—;Ff.rﬁ. =

= Belease — High cost,
ieputation, release a hot fix
(patch), decumentation,
publishing, etc.

Slide #3

A Rroduct's Life Cycle — cont.

= Types of tools
qx'&“ Dﬂ% = Build, Source control
4 = Bug tracking (‘RAID?)

= Compilers, Linkers &
S Debuggers
¥ Q

u._%& = Profiling & Optimization
Stapilize =Jlesting: Coverage, Fault

Injection, Test case generation,
Prioritization, Capture & Replay,

= T [Ty E-
ﬁ;ff’.rﬁ- =

=| ocalization
= Bun-time checkers/verifiers

= Static Analysis — this is our

focus today.
Slide #4

Static analysis tools

® Analyze code and detect potential defects

= Advantages:
= Not limited by test cases
= |dentify location ol defect precisely (easy to fix)
= Applicable eanly in the development cycle

= Puts responsibility onidevelopers

= |ssues
= Up-front investment
= Usability and noise
= Scalability
= |ntegration into environment

Slide #5

TTRaree common questions

® Do these tools find important defects?

= Yes, definitely’— including defects that would cause
security bulletins;, blue screens, ...

® |s every warning emitted by the tools useful?
= No, definitely
= We continue o fecus oni “noise”, but it won't go away

® Do these tools find all the defects”?
= No, no, no!

Slide #6

PREfix

@ Implemented by MSR PPRC (Microsoit
Research;, Programmer Productivity.
Research Center)

® C/C++ delect detection via static analysis

@ Powerful inter-procedural analysis
= |ncomplete
= Useful in practice

@ Typically runias part of a ecentralized build

Someerects PRENX FInas

¢ Memory Management o o o ..o Leakage

- Doubleriree
- Freeing poeinterto non-allocatea

memory. (stack, global, etc.)

- Freeing poeinter infmidale of

memory: bleck
Initialization

- Using uninitialized memaory.
- Freeing or dereferencing

uninitialized pointer
Bounds violations

- Overrun (reference beyond end)
- Underflow (reference before: start

of buffer)

- Failure to validate buffer size

Leaking Memory/Resource
Pointer Management

Dereferencing NULL pointer

Dereferencing invalid peinter

Returns pointer to local

Dereferencing or returning

pointer to freed memory
lllegal State

Resource in illegal state

lllegal value

Divide by zero

Wiiting to constant string

Slide #8

HighFlevel architecture

PREX Architecture

Per-function »Bug
analyses Defects Tracking
(aka “plugins™} (SQL Defect

Source
Code

PREfix
“driver” Per-exe
analyses
Build l ‘

Instructions Cross-exe
analyses

Slide #10

PEREX: Viewing Results

Source
Code

Slide #11

TML User Interface

; Annotated Source File - Microzoft Internet Explorer provided by ITG
Fil= Edit “iew Fawortez Toolz Help
S < R % A B = R R IR R R S~ S
Erant: Eariwand Stap Refresh Home Search Favoritez Hiztomw b il Frint E dit Dizcuzz

J.-'l".gldress IE http: £ #chrizw-pBf nbwk sta. ntdey microzaft com: 8081 Acgi-bindpldcai exe Yid=408magid=2802 j cf'{> Go |J Links **

PREfiX View Annotated Source " Msg List " Edit Msg

PREfix simulation path begins

Yiew ...

* 128 & if {Size = S5ize J sizeof({ RTL CRITICAL SECTIOH DEEUG }}

Show Cnly
© Fumction

Show AssUnm plions
" -and Calls

Go to ...

Start of Function return p:

_Start of Path
resource.c, line 138 : warning (1): using uninitialized memorny p’

- Warning Line problem occurs in function "RtipChainDebugInfo’

variahle declared on line 126
Meabllaw ~Armcssen sas Llimws dla Fa s alan ra nn“,.llld-:n“n R F

l_ l_ & Irternst

Slide #12

PRIE Simulator

Simulator

Execution control
= Walks ASI parse trees to follow - Em—

various execution paths Analysis
Virtualmachine (VM) Virtual Machine
= Tracks symbolic state ofi “virtual compulel

Auto Modeler

s (Generates behavioral description (model) of each
function from the virttial machine’s information

Error analysis
= Finds and reports defects based on state of VIM

Slide #13

Analysis i1s not Complete

® Functions may have huge numbers of paths

@ PREfix only explores N paths per function
= User-configurable, default is 50
= [.e., we give Uup on completeness

® Experiments indicate

= Number of defects grows slowly with more paths
= E.g., defects for 200 paths = 1.2 * defects for 50 paths
= defects for 1000 paths = 1.25 * defects for 50 paths

= Analysis time grows linearly with more paths
= E.g., time for 1000 paths =20 * time for 50 paths

Slide #14

Analysis Is not Sound

¢ Approximations for performance, e.g.
= | oops:traverse 0 or 1 time and then approximate
= Recursion: explore cycles “until we're bored”

® Can't always find a model for a function call

= E.g., Functionipointers; Virtual functions, 3@-party
libraries

® Experiments indicate relatively few incorrect
messages due to analysis inaccuracies

Slide #15

AnRalysis works well'in
PIraClEE

® Finds enough real defects to be useful

® Noise Is lew'enough that people use it
= Not just ananalysis issue; see below

® Scales well, sorworks on large code
bases

Slide #16

Sample defect PRETiX
message

void uwmsrsid (LPCTSTR in) {
TCHAR buff[100];

_tesnepy (buff, in, sizeof (buff));
/* ..
}

TCHAR is typedef’'ed as eithier char or wehar_t, depending
' on whether UNICODE is defined

_lesnecpy expands to either stimepy or Wesncpy.

Slide #17

Sample defect PRETiX
m%% ggSTR in)

TCHAR buff[100];
_tcsnepy (buff, in, sizeof (buff)) ;

}

uwmsrsi4.c(10) : warning 51: using number of bytes
instead of humber' of characters for 'buff’ used as
parameter' 1 (dest) of call to ‘'wcsncpy size of

buffer ‘buff* is 200/ bytes reference Is 399 bytes
from start of buitfer

uwmsrsi4.c(9) : stack variable declared here

problem occurs whenithe following condition Is
frue:

uwmsrsi4.c(10) : when ‘weslen(in) >= 200" during
call to ‘wecsncpy’ here

Slide #18

PREast

Lightweight, “desktop” defect detection
Simple intra-procedural analyses
Implemented by MSR PPRC + others

= Windows devs involved in initial design, implementation

= QOffice devs contributed! significantly, including OACR
environment

= Extensibility allewed contributions from others

Key goal: do less; but doiit guickly

= Allow developers to find bugs: before check in
= Extensibility led to very rapid enhancements
Ties in with key challenges

= |nitial focus on security defects

= Used as part of security bug bashes

Slide #19

PIREAst “defect descriplion”

® An XML description of each defect, with

Briefi description (mandatory; everything else Is
optional)

Additional details

Effect of the deiiect

Hypothesis about cause (phrased as guestion)
Severity

One or more examples (erroneous and
corrected code)

Slide #20

Some Perfects PREfast Einads

Buffer Overrun

= Array bounds vielations
HRESULT

= Abuses of the HRESULT type
Precedence

= Precedence mistakes

PREfix-Lite

= Uninitialized variables

= NULL pointers

= |eaks

Typos

s Syntax errors in your code

Slide #21

Sample PREfast message

® pFunc = (LPEN)GetProcAddress (hModule, "GetCredentials") ;
?f (NULL == pEunc)

rc = GetLastError () ;
%f (ERROR_PROC_NOT FOUND == rc)

}
(pFunc) (hSexrver, 0, (LPBYTE*) &pCred) ;

goto Exit;

Slide #22

Sample PREfast message

@ pEunc = (LPEN)GetProcAddress (hModule, "GetCredentials");
%f (NULL == pFunc)
rc = GetLastError () ;
%f (ERROR_PROC_NOT FOUND == rc)

}
rc = (pFunc) (hServer, 0, (LPBYTE*) &pCred) ;

goto Exit;

exportrrasconfig.cpp(324) : : Dereferencing

NULL pointer ‘pFunc’.

problem occurs in function '‘CheckServer’

Path includes 19 statements on the following lines:
283 284 285 286 287 288 290 291 297

298 300 301 303 304 306 307 317 318 324

Slide #23

ample PREfast message

< PREfast Defeck Log

View Annotated Source Prev 4 ® Msg List b Next

hr = HRESULT FROM WIN32{GetLastError({})};
CHECK DBG_EXIT("CheckServerPresharedIpsecKeyInfo: :MpradminMIBServerCo

¥

MprGetCredentialsFunc = (LPFN MprAdminServerGetCredentials)GetProcAddress
if {(HULL == MprGetCredentialsFunc})

1

ro = GetLastErrori):
if (ERROR _PROC HOT FOUND == rc}
i

£

J¢ Windowa Z000 - the proc doss not exXistc
i 4

hr = 3 OK:

goto Exit:

b
else

i

hr = HRESULT FROM WIN32{rc): —
CHECKE DBG EXTT("CheckServerPresharedIpsecKeyInfo: :GetProcAddress"

= {MprGetCredentialsFunc) (hServer, 0, (LPBYTE*)kpmprCredentials) ;

exportrrasconfig.cpp(324) : warning 11: Dereferencing NULL pointer 'MprGetCredentialsFunc’,
problem occurs in function 'CheckServerPresharedlpsecHKeylnfo’

Path includes 19 statements on the following lines:

203 264 205 286 287 280 290 291 297 298 300 301 303 304 306 3II]? M7 36 324

Slide #24

Noise

@ Noise = “‘messages people don't care about”
= (not just “bogus™ messages)

@ Usually, neise Is worse than missing a defect
Too much noise

=> people won't use the tool
== missing all the defects

Slide #25

VIESSa@eE Prioritization

Which messages correspond to defects that
will-actually:be fixed?

“‘Rank™: a synthetic metric of a message's
“‘gooadness”

Better-ranking messages are more likely to
identity defects that willl actually get fixed

Multiple dimensiens:
Severity of consegquences
Likelihood that message! Is correct
Comprehensibility’ of: message

Slide #26

NoIserand history.

® Noise naturally increases over time
= People fix the real defects

® A history mechanism avoids these
problems

= Distinguish newly-ocecuring messages
= Goal: avoid re-examining Noise messages

Slide #27

Conpare and contrast ...

Use : “Instant
Viode) Ve results”

Cross-
PREfix | N
Build detailed
Single-

PREfast | Desktop | function,
superificial

Slide #28

Sample usage:

WIneeWSs: erganization
@ PRETfix: centralized runs
= Defects filearautomatically
= Roughly monthly: from 1/2000-present
= 30 MLOC — 6/days to complete a run
= Some teams also run PREfix on their own

| @ PREfast: run Py Individual devs/testers
= Fix before check in
= Or run against checked-in code

Slide #29

Summary.

® Detecling defects earlier in the cycle

= PREIfix: after code is checked in
= As opposed to during testing or post-release

= PREfast: before code Is checked in

@ Static analysis is becoming pervasive

= PREfix, PREfast’s initial successes mean this
IS no longer a “research” technology

= Overcoming “noise” is vital

@ [echnology Is encouraging pProcess
change

Slide #30

Questions?

Slide #31

Slide #32

Slide #33

