
Static Code Analysis Static Code Analysis
Procedures in the Procedures in the

Development CycleDevelopment Cycle

Tools, Technology, and Process in Tools, Technology, and Process in
Engineering at Microsoft Engineering at Microsoft

Mooly BeeriMooly Beeri
Microsoft Haifa R&D CenterMicrosoft Haifa R&D Center

Slide #2

AgendaAgenda

Static code analysis toolsStatic code analysis tools
PREfix and PREfastPREfix and PREfast
Integration into the development cycleIntegration into the development cycle
SummarySummary

Slide #3

A Product’s Life CycleA Product’s Life Cycle
Cost of fixing bugsCost of fixing bugs

Plan & Design Plan & Design -- no code bugs no code bugs
((��))

Implementation Implementation –– Low cost, Low cost,
just fix the code and check injust fix the code and check in

Stabilize Stabilize –– Medium cost, track Medium cost, track
the bug, develop the the bug, develop the ‘‘rightright’’ test test
case, etc.case, etc.

Release Release –– High cost, High cost,
reputation, release a hot fix reputation, release a hot fix
(patch), documentation, (patch), documentation,
publishing, etc.publishing, etc.

Slide #4

A Product’s Life Cycle A Product’s Life Cycle –– cont.cont.
Types of toolsTypes of tools

Build, Source controlBuild, Source control
Bug tracking (Bug tracking (““RAIDRAID””))
Compilers, Linkers & Compilers, Linkers &

DebuggersDebuggers
Profiling & OptimizationProfiling & Optimization
Testing: Coverage, Fault Testing: Coverage, Fault

injection, Test case generation, injection, Test case generation,
Prioritization, Capture & Replay, Prioritization, Capture & Replay,
……

LocalizationLocalization
RunRun--time checkers/verifierstime checkers/verifiers
Static Analysis Static Analysis –– this is our this is our

focus today.focus today.

Slide #5

Static analysis toolsStatic analysis tools
Analyze code and detect potential defectsAnalyze code and detect potential defects

Advantages: Advantages:
Not limited by test casesNot limited by test cases
Identify location of defect precisely (easy to fix)Identify location of defect precisely (easy to fix)
Applicable early in the development cycleApplicable early in the development cycle
Puts responsibility on developersPuts responsibility on developers

IssuesIssues
UpUp--front investment front investment
Usability and noiseUsability and noise
ScalabilityScalability
Integration into environment Integration into environment

Slide #6

Three common questionsThree common questions

Do these tools find important defects?Do these tools find important defects?
Yes, definitely Yes, definitely –– including defects that would cause including defects that would cause
security bulletins, blue screens, …security bulletins, blue screens, …

Is every warning emitted by the tools useful?Is every warning emitted by the tools useful?
No, definitelyNo, definitely
We continue to focus on “noise”, but it won’t go awayWe continue to focus on “noise”, but it won’t go away

Do these tools find all the defects?Do these tools find all the defects?
No, no, no!No, no, no!

Slide #7

PREfixPREfix
Implemented by MSR PPRC (Microsoft Implemented by MSR PPRC (Microsoft
Research, Programmer Productivity Research, Programmer Productivity
Research Center)Research Center)
C/C++ defect detection via static analysisC/C++ defect detection via static analysis
Powerful interPowerful inter--procedural analysis procedural analysis

IncompleteIncomplete
Useful in practiceUseful in practice

Typically run as part of a centralized buildTypically run as part of a centralized build

Slide #8

Some Defects PREfix FindsSome Defects PREfix Finds

Resource LeakageResource Leakage
�� Leaking Leaking Memory/ResourceMemory/Resource

Pointer ManagementPointer Management
�� Dereferencing NULL pointerDereferencing NULL pointer
�� Dereferencing invalid pointerDereferencing invalid pointer
�� Returns pointer to localReturns pointer to local
�� Dereferencing or returning Dereferencing or returning

pointer to freed memorypointer to freed memory
Illegal StateIllegal State

�� Resource in illegal stateResource in illegal state
�� Illegal valueIllegal value
�� Divide by zeroDivide by zero
�� Writing to constant stringWriting to constant string

Memory ManagementMemory Management
�� Double freeDouble free
�� Freeing pointer to nonFreeing pointer to non--allocated allocated

memory (stack, global, etc.)memory (stack, global, etc.)
�� Freeing pointer in middle of Freeing pointer in middle of

memory blockmemory block
InitializationInitialization

�� Using uninitialized memoryUsing uninitialized memory
�� Freeing or dereferencing Freeing or dereferencing

uninitialized pointeruninitialized pointer
Bounds violationsBounds violations

�� Overrun (reference beyond end)Overrun (reference beyond end)
�� Underflow (reference before start Underflow (reference before start

of buffer)of buffer)
�� Failure to validate buffer sizeFailure to validate buffer size

Slide #9

HighHigh--level architecturelevel architecture

�����

���	
��	����

��
��

����

�����

����

����	���

����

�����	�

Slide #10

Defects
(SQL

or XML)

������
��	�
�	�

PREfix ArchitecturePREfix Architecture

Build
Instructions

Source
Code

Build
info

Per-function
analyses

(aka “plugins”)

Cross-exe
analyses

Per-exe
analyses

���
�	������

�������
����

Slide #11

PREfix: Viewing ResultsPREfix: Viewing Results

���
�
��

�����	�

����	���

����

��

��
��

����

�
��

Slide #12

HTML User InterfaceHTML User Interface

Slide #13

PREfix SimulatorPREfix Simulator

Execution controlExecution control
Walks AST parse trees to followWalks AST parse trees to follow
various execution pathsvarious execution paths

Virtual machine (VIM)Virtual machine (VIM)
Tracks symbolic state of “virtual computer”Tracks symbolic state of “virtual computer”

Auto ModelerAuto Modeler
Generates behavioral description (Generates behavioral description (modelmodel) of each) of each
function from the virtual machine’s informationfunction from the virtual machine’s information

Error analysisError analysis
Finds and reports defects based on state of VIMFinds and reports defects based on state of VIM

SimulatorSimulator

Auto
Modeler

Virtual Machine

Execution Control

Error
Analysis

Slide #14

Analysis is not CompleteAnalysis is not Complete
Functions may have huge numbers of pathsFunctions may have huge numbers of paths
PREfix only explores N paths per functionPREfix only explores N paths per function

UserUser--configurable, default is 50configurable, default is 50
I.e., we give up on completenessI.e., we give up on completeness

Experiments indicateExperiments indicate
Number of defects grows slowly with more pathsNumber of defects grows slowly with more paths

E.g., defects for 200 paths = 1.2 * defects for 50 pathsE.g., defects for 200 paths = 1.2 * defects for 50 paths
defects for 1000 paths = 1.25 * defects for 50 pathsdefects for 1000 paths = 1.25 * defects for 50 paths

Analysis time grows linearly with more pathsAnalysis time grows linearly with more paths
E.g., time for 1000 paths = 20 * time for 50 pathsE.g., time for 1000 paths = 20 * time for 50 paths

Slide #15

Analysis is not SoundAnalysis is not Sound

Approximations for performance, e.g.Approximations for performance, e.g.
Loops: traverse 0 or 1 time and then approximateLoops: traverse 0 or 1 time and then approximate
Recursion: explore cycles “until we’re bored”Recursion: explore cycles “until we’re bored”

Can’t always find a model for a function callCan’t always find a model for a function call
E.g., Function pointers, Virtual functions, 3E.g., Function pointers, Virtual functions, 3rdrd--party party
librarieslibraries

Experiments indicate relatively few incorrect Experiments indicate relatively few incorrect
messages due to analysis inaccuraciesmessages due to analysis inaccuracies

Slide #16

Analysis works well in Analysis works well in
practicepractice

Finds enough real defects to be usefulFinds enough real defects to be useful

Noise is low enough that people use itNoise is low enough that people use it
Not just an analysis issue; see belowNot just an analysis issue; see below

Scales well, so works on large code Scales well, so works on large code
basesbases

Slide #17

Sample defect PREfix Sample defect PREfix
messagemessage
void uwmsrsi4(LPCTSTR in) {void uwmsrsi4(LPCTSTR in) {
TCHAR buff[100];TCHAR buff[100];
__tcsncpytcsncpy(buff, in, (buff, in, sizeofsizeof(buff));(buff));
/* ... *//* ... */
}}

TCHAR TCHAR is is typedef’edtypedef’ed as either char or as either char or wcharwchar_t, depending _t, depending
on whether UNICODE is definedon whether UNICODE is defined

__tcsncpytcsncpy expands to either expands to either strncpystrncpy or or wcsncpywcsncpy

Slide #18

Sample defect PREfix Sample defect PREfix
messagemessage

uwmsrsi4.c(10) : uwmsrsi4.c(10) : warning 51: using number of bytes warning 51: using number of bytes
instead of number of charactersinstead of number of characters for 'buff‘ used as for 'buff‘ used as
parameter 1 (parameter 1 (destdest) of call to ') of call to 'wcsncpywcsncpy‘ size of ‘ size of
buffer 'buff' is 200 bytes reference is 399 bytes buffer 'buff' is 200 bytes reference is 399 bytes
from start of bufferfrom start of buffer

uwmsrsi4.c(9) : stack variable declared hereuwmsrsi4.c(9) : stack variable declared here
problem occurs when the following condition is problem occurs when the following condition is
true:true:
uwmsrsi4.c(10) : when ‘uwmsrsi4.c(10) : when ‘wcslenwcslen(in) >= 200' during (in) >= 200' during
call to 'call to 'wcsncpywcsncpy' here' here

void uwmsrsi4(LPCTSTR in) void uwmsrsi4(LPCTSTR in)
{{

TCHAR buff[100];TCHAR buff[100];
__tcsncpytcsncpy(buff,in,(buff,in,sizeofsizeof(buff));(buff));

}}

Slide #19

PREfastPREfast
Lightweight, “desktop” defect detectionLightweight, “desktop” defect detection
Simple intraSimple intra--procedural analyses procedural analyses
Implemented by MSR PPRC + othersImplemented by MSR PPRC + others

Windows Windows devsdevs involved in initial design, implementationinvolved in initial design, implementation
Office Office devsdevs contributed significantly, including OACR contributed significantly, including OACR
environment environment
Extensibility allowed contributions from othersExtensibility allowed contributions from others

Key goal: do less, but do it quicklyKey goal: do less, but do it quickly
Allow developers to find bugs before check inAllow developers to find bugs before check in
Extensibility led to very rapid enhancementsExtensibility led to very rapid enhancements

Ties in with key challengesTies in with key challenges
Initial focus on security defectsInitial focus on security defects
Used as part of security bug bashesUsed as part of security bug bashes

Slide #20

PREfast “defect description”PREfast “defect description”

An XML description of each defect, withAn XML description of each defect, with
Brief description (mandatory; everything else is Brief description (mandatory; everything else is
optional)optional)
Additional detailsAdditional details
Effect of the defectEffect of the defect
Hypothesis about cause (phrased as question)Hypothesis about cause (phrased as question)
SeveritySeverity
One or more examples (erroneous and One or more examples (erroneous and
corrected code)corrected code)

Slide #21

Some Defects PREfast FindsSome Defects PREfast Finds
Buffer OverrunBuffer Overrun

Array bounds violationsArray bounds violations
HRESULTHRESULT

Abuses of the HRESULT typeAbuses of the HRESULT type
PrecedencePrecedence

Precedence mistakesPrecedence mistakes
PREfixPREfix--LiteLite

UninitializedUninitialized variablesvariables
NULL pointersNULL pointers
LeaksLeaks

TyposTypos
Syntax errors in your codeSyntax errors in your code

Slide #22

Sample PREfast messageSample PREfast message

pFuncpFunc == (LPFN)(LPFN)GetProcAddressGetProcAddress((hModulehModule,","GetCredentialsGetCredentials");");
ifif (NULL(NULL ==== pFuncpFunc))
{{

rcrc == GetLastErrorGetLastError();();
ifif (ERROR_PROC_NOT_FOUND(ERROR_PROC_NOT_FOUND ==== rcrc))
{{

gotogoto Exit;Exit;
}}

}}
rcrc == (pFunc)(hServer,0,(LPBYTE*)&(pFunc)(hServer,0,(LPBYTE*)&pCredpCred););

Slide #23

Sample PREfast messageSample PREfast message
pFuncpFunc == (LPFN)(LPFN)GetProcAddressGetProcAddress((hModulehModule,","GetCredentialsGetCredentials");");
ifif (NULL(NULL ==== pFuncpFunc))
{{

rcrc == GetLastErrorGetLastError();();
ifif (ERROR_PROC_NOT_FOUND(ERROR_PROC_NOT_FOUND ==== rcrc))
{{

gotogoto Exit;Exit;
}}

}}
rcrc == (pFunc)(hServer,0,(LPBYTE*)&(pFunc)(hServer,0,(LPBYTE*)&pCredpCred););

exportrrasconfig.cpp(324) : warning 11: Dereferencing
NULL pointer ‘pFunc'.
problem occurs in function 'CheckServer'
Path includes 19 statements on the following lines:
283 284 285 286 287 288 290 291 297
298 300 301 303 304 306 307 317 318 324

Slide #24

Sample PREfast messageSample PREfast message

Slide #25

NoiseNoise

Noise = “messages people don’t care about”Noise = “messages people don’t care about”
(not just “bogus” messages)(not just “bogus” messages)

Usually, noise is worse than missing a defectUsually, noise is worse than missing a defect

Too much noise Too much noise
=> people won’t use the tool=> people won’t use the tool

== missing == missing all all the defectsthe defects

Slide #26

Message PrioritizationMessage Prioritization
�� Which messages correspond to defects that Which messages correspond to defects that

will actually be fixed?will actually be fixed?
�� “Rank”: a synthetic metric of a message’s “Rank”: a synthetic metric of a message’s

“goodness”“goodness”
�� BetterBetter--ranking messages are more likely to ranking messages are more likely to

identify defects that will actually get fixedidentify defects that will actually get fixed

�� Multiple dimensions:Multiple dimensions:
�� Severity of consequencesSeverity of consequences
�� Likelihood that message is correctLikelihood that message is correct
�� Comprehensibility of messageComprehensibility of message
�� ……

Slide #27

Noise and historyNoise and history

Noise naturally increases over timeNoise naturally increases over time
People fix the real defectsPeople fix the real defects

A history mechanism avoids these A history mechanism avoids these
problemsproblems

Distinguish newlyDistinguish newly--occuringoccuring messagesmessages
Goal: avoid reGoal: avoid re--examining noise messagesexamining noise messages

Slide #28

Compare and contrast …Compare and contrast …

> 100> 100
SingleSingle--
function, function,
superficialsuperficial

DesktopDesktopPREfastPREfast

~ 40~ 40
CrossCross--
function, function,
detaileddetailed

CentralCentral
BuildBuild

PREfix PREfix

“Instant “Instant
results”results”

Kinds Kinds
of of
defectsdefects

AnalysisAnalysis
UseUse
ModelModel

Slide #29

Sample usage: Sample usage:
Windows organizationWindows organization

PREfix: centralized runsPREfix: centralized runs
Defects filed automaticallyDefects filed automatically
Roughly monthly from 1/2000Roughly monthly from 1/2000--presentpresent
30 MLOC 30 MLOC –– 6 days to complete a run6 days to complete a run
Some teams also run PREfix on their ownSome teams also run PREfix on their own

PREfast: run by individual PREfast: run by individual devsdevs/testers/testers
Fix before check inFix before check in
Or run against checkedOr run against checked--in codein code

Slide #30

SummarySummary
Detecting defects Detecting defects earlier earlier in the cyclein the cycle

PREfix: after code is checked inPREfix: after code is checked in
As opposed to during testing or postAs opposed to during testing or post--releaserelease

PREfast: before code is checked inPREfast: before code is checked in

Static analysis is becoming pervasiveStatic analysis is becoming pervasive
PREfix, PREfix, PREfast’sPREfast’s initial successes mean this initial successes mean this
is no longer a “research” technologyis no longer a “research” technology
Overcoming “noise” is vitalOvercoming “noise” is vital

Technology is encouraging process Technology is encouraging process
changechange

Slide #31

Questions?Questions?

Slide #32

Slide #33

