
Regression-Verification for C code

Orna Grumberg
Orly Meir

Ofer Strichman

Technion



We propose…

w To develop a method for formally verifying the 
equivalence of two closely-related C programs, under 
certain restrictions.

w To develop a tool that applies this technique to large 
programs.

w This will enable developers to shift from ‘Regression 
Testing’ to ‘Regression verification’.



Testing and Regression Testing

w Advantage of Testing (vs. formal verification): 
controllable complexity. Complexity of testing is 
linear in the number of test cases.

w Regression Testing is the most popular automatic 
testing technique for general software.



Regression Testing vs. Property-based 
Testing

w Advantages of Regression Testing: 
n Does not require formal specification.

l Formal spec is hard , not always possible
l Occasionally a property is as complex as the program 

itself
n Can be applied from early development stages.



Regression Testing vs. Property-based 
Testing

w Disadvantages of Regression Testing:
n Does not require formal specification

l What does correctness mean without a specification?
l Temporal properties are very hard to check.

n The base-case is checked ‘manually’



Limitations of Regression-Verification

w Proving equivalence of two general programs is in 
general undecidable.

w Some sacrifice in completeness is required.
w Even when the problem is decidable - the 

complexity may prevent us from checking large 
programs.



Existing tools for automated verification 
of C

w We propose to build regression verification on top 
of existing tools for verification of C programs.

w Three main categories:
n Predicate Abstraction based tools (MS-SLAM, CMU-

Magic, Berkley’s BLAST).
n Model-checking of C programs with bounded resources 

(CMU-CBMC, IBM’s Wolf).
n Explicit state-representation (SPIN-based).



Predicate abstraction

int x,y
L0: x = 1;
L1: y = 1;
L2: if (x == y)
L3: y = 1;
L4: else y = 2;

Control Flow Automaton



Predicate abstraction (cont’d)

Control Flow Automaton Predicate inference

Compute
Weakest 
precondition



Predicate inference Abstract model

Predicate abstraction (cont’d)



Disadvantages of predicate-abstraction

w There are properties that cannot be proven correct 
in certain programs without an infinite number of 
predicates

w Even when a finite set of predicates is sufficient -
finding it automatically is hard.

w Existing tools typically look only at the predicates 
appearing in the program text. This limits the 
number of programs that can be verified.



Using Predicate-abstraction for regression 
verification

w The old and new versions of the code are represented 
as two abstract machines, A and B.

w Let P = {P1, … , Pn} represent the set of predicates
that the user expects to be evaluated the same by both 
programs.

…

Option 1: compare predicates.



Using Predicate-abstraction for regression 
verification

w Find the sets aP,bP 2 2P , containing the reachable 
sets of valuations of P predicates in the two 
programs, respectively.

w If aP ≠ bP then the equivalence check fails.

Option 1: compare predicates (cont’d).



Using Predicate-abstraction for regression 
verification

w The old and new versions of the code are 
represented as two abstract machines, A and B. 
Consider the product C = A £ B.

w Let P = {P1, … , Pn} represent the set of predicates
that the user expects to be True in C in a given 
program location.

…

Option 2: Compare variables values in A £ B



Using Predicate-abstraction for regression 
verification

w Find a reachable state in C that satisfies 
: (P1 Æ ¢ ¢ Æ Pn).

w If found such state, the equivalence check fails.

Option 2: Compare variables values in A £ B (cont’d)



Bounded resources (1): Bounded Model 
Checking of C

w CBMC is a tool developed by D. Kroening, that:
n Unrolls a given ANSI-C program up to a given bound on 

each loop and recursion depth.
n Translates the resulting transition relation to propositional 

logic, assuming the given (finite) type of each variable (e.g. 
an integer is represented by a 32-bit vector).

n Adds the negation of user-defined assertions to the formula.
n Sends the resulting formula to a SAT solver.



Bounded resources (1): Bounded Model 
Checking of C

w Main disadvantages: 
n On realistic programs, very restricted (due to complexity) in 

the unrolling bound, especially in the presence of nested 
loops.

n Typically more (manual) abstractions are required.

w Main advantages: 
n In theory can prove any terminating program. 
n Supports full ANSI-C.



Bounded resources (1): CBMC and 
Regression Verification

w CBMC was used in the past to verify the 
equivalence of C and Verilog specifications.

w Proving equivalence between two C programs
seems easy: simply add assertions that refer to 
variables in both programs.



Bounded resources (2): IBM’s C 
verification tool

w Using the power of RuleBase
w Translates most of C to EDL
w Uses a Program Counter
w Models bounded-depth recursion with a bounded stack.
w Models dynamic memory allocation with a bounded heap.
w Automatic specifications: no infinite loops, no assert 

violations, no memory leaks, no access to dangling pointers, 
no out of bound access to arrays



It gets more interesting…

w The main challenge is to be able to prove large 
programs, larger than can be verified by the existing 
C verification tools

w There are various optimizations and decomposition 
rules that can be applied only when proving 
equivalence, but not when performing model-
checking.



Using Uninterpreted Functions

w When the two C programs are close, we expect 
many functions to be syntactically equivalent. 

w Q: How can we use this fact to prune the state space 
spanned by the verification tool ? 

w A: With Uninterpreted Functions.



Using Uninterpreted Functions

w Every function, e.g. int f, may have:
n Arguments a1…,an

n A set of global variables which it reads Gr

n A set of global variables to which it writes Gw

n A return value

w Replace function invocations with new variables
int f,f’

w Maintain functional consistency…



Using Uninterpreted Functions

Consistency with global variables:
w if two functions

n receive the same arguments, and
n read equal global variables, 

w then 
n their result is the same, and
n the value of global variables to which they write is the 

same



Uninterpreted functions: example

…
int xí, aí, bí, global_Rí, global_Wí;
Ö
int fí (int arg1í, int arg2í) {

int localí;
localí = global_Rí + arg1í;
global_Wí = localí + arg2í;
return localí;

}
…
x’ = 2 * f’(a’,b’); 
…

…
int x, a, b, global_R, global_W;
Ö
int f (int arg1, int arg2) {

int local;
local = global_R + arg1;
global_W = local + arg2;
return local;

}
…
x = f(a,b);
…



Uninterpreted functions: example

…
int xí, aí, bí, global_Rí, global_Wí;
Ö
int fí;

…
x’ = 2 * f’; 
…

…
int x, a, b, global_R, global_W;
Ö
int f;

…
x = f;
…



Uninterpreted functions: example

…
int xí, aí, bí, global_Rí, global_Wí;
Ö
int fí;
…
x’ = 2 * f’; 
…

…
int x, a, b, global_R, global_W;
Ö
int f;
…
x = f;
…

Add the constraint:
(global_R = global_R’ Æ a = a’ Æ b = b’) ! (global_W = global_W’ Æ f = f’)



Some questions we would like to answer

w Q: What if two functions are similar but not 
syntactically the same ?

w Q: Once an error is found, how do we let users 
approve changes in an efficient way ? 

w …


