Regression-Verification for C code

Orna Grumberg
Orly Meir
Ofer Strichman

Technion



We propose...

* To develop amethod for formally verifying the
equivalence of two closely-related C programs, under
certain restrictions.

+ To develop atool that applies this technique to large
programs.

¢ Thiswill enable developers to shift from ‘ Regression
Testing' to ‘ Regression verification’.



Testing and Regression Testing

+ Advantage of Testing (vs. formal verification):
controllable complexity. Complexity of testing is
linear in the number of test cases.

* Regression Testing is the most popular automatic
testing technique for general software.



Regression Testing vs. Property-based
Testing

+ Advantages of Regression Testing:
= Does not require formal specification.
e Formal specishard, not always possible
e Occasionally a property is as complex asthe program
Itself
= Can be applied from early development stages.



Regression Testing vs. Property-based
Testing

¢ Disadvantages of Regression Testing:
= Does not require formal specification
e What does correctness mean without a specification?
e Temporal properties are very hard to check.
= Thebase-case is checked ‘ manually’



Limitations of Regression-V erification

* Proving equivalence of two general programsisin
general undecidable.

+ Some sacrifice in completeness is required.

+ Even when the problem is decidable - the
complexity may prevent us from checking large
programs.



Existing tools for automated verification
of C

+ \We propose to build regression verification on top
of existing tools for verification of C programs.

¢ Three main categories.

= Predicate Abstraction based tools (MS-SLAM, CM U-
Magic, Berkley’ sBLAST).

= Model-checking of C programs with bounded resources
(CMU-CBMC, IBM’ sWolf).

« Explicit state-representation (SP I N-based).



x=1;
y=1,

If (X ==

else

Predicate abstraction

{

G

Ll:y=1

-2

Control Flow Automaton



Predicate abstraction (cont’ d)

| @
(1 CLo:x=1
@ Compute 4 I
Weakest
@ precondition ((x == 1)} @E

:>

Control Flow Automaton Predicate inference



Predicate abstraction (cont’ d)

Predicate inference Abstract model



Disadvantages of predicate-abstraction

+ There are properties that cannot be proven correct
In certain programs without an infinite number of
predicates

+ Even when afinite set of predicates is sufficient -
finding It automatically is hard.

+ Existing tools typically look only at the predicates
appearing in the program text. This limits the
number of programs that can be verified.



Using Predicate-abstraction for regression
verification

Option 1. compare predicates.

+ The old and new versions of the code are represented
as two abstract machines, A and B.

* LetP={P, ..., P} represent the set of predicates
that the user expects to be evaluated the same by both
programs.



Using Predicate-abstraction for regression
verification

Option 1. compare predicates (cont’ d).

¢ Find the setsap,bp 2 27, containing the reachable
sets of valuations of P predicates in the two
programs, respectively.

¢ |If ap * by then the equivalence check fails.



Using Predicate-abstraction for regression
verification

Option 2. Compare variablesvaluesin A £ B

+ Theold and new versions of the code are
represented as two abstract machines, A and B.
Consider the product C = A £ B.

¢ LetP={P, ..., P} represent the set of predicates
that the user expectsto be Truein C inagiven
program location.



Using Predicate-abstraction for regression
verification

Option 2. Compare variables valuesin A £ B (cont’ d)

* Find areachable state in C that satisfies
(P ECLEP,).

+ |f found such state, the equivalence check fails.



Bounded resources (1): Bounded Model
Checking of C

+ CBMC isatool developed by D. Kroening, that:

« Unrollsagiven ANSI-C program up to a given bound on
each loop and recursion depth.

» Trandlatesthe resulting transition relation to propositional
logic, assuming the given (finite) type of each variable (e.g.
an integer is represented by a 32-bit vector).

= Adds the negation of user-defined assertionsto the formula.

= Sendsthe resulting formulato a SAT solver.



Bounded resources (1): Bounded Model
Checking of C

+ Main disadvantages:

= Onrealistic programs, very restricted (due to complexity) in
the unrolling bound, especially in the presence of nested
loops.

« Typically more (manual) abstractions are required.
+ Man advantages:

= Intheory can prove any terminating program.

« Supportsfull ANSI-C.



Bounded resources (1): CBMC and
Regression Verification

¢+ CBMC was used in the past to verify the
equivalence of C and Verilog specifications.

* Proving eguivalence between two C programs
seems easy:. simply add assertions that refer to
variables in both programs.



Bounded resources (2): IBM'sC
verification tool

Using the power of RuleBase

Trandlates most of C to EDL

Uses a Program Counter

Models bounded-depth recursion with a bounded stack.
Models dynamic memory allocation with a bounded heap.

Automatic specifications no infinite loops, no assert
violations, no memory leaks, no access to dangling pointers,
no out of bound access to arrays



It gets more interesting...

+ The main challengeisto be able to prove large
programs, larger than can be verified by the existing
C verification tools

¢ There are various optimizations and decomposition
rules that can be applied only when proving
equivalence, but not when performing model-
checking.



Using Uninterpreted Functions

* \When the two C programs are close, we expect
many functionsto be syntactically equivalent.

+ Q: How can we use this fact to prune the state space
spanned by the verification tool ?

* A: With Uninterpreted Functions.



Using Uninterpreted Functions

+ Every function, e.g. int f, may have:

» Arguments a,...,a,

» A set of global variableswhich it reads G,

» A setof global variablesto which it writesG,,
= Areturn value

* Replace function invocations with new variables
int f,1

+ Maintain functional consistency...



Using Uninterpreted Functions

Consistency with global variables:

+ |f two functions

= receive the same arguments, and
» read equal global variables,

¢ then
« thear result isthe same, and
» thevalue of global variables to which they write isthe
same

(/\@z’=ﬂf%f\ /\ Q-P=Q;=)—}(f=fff\ /\ Qw=9fiu)

=1 greGyp GuwEGuy



Uninterpreted functions. example

Int X, a, b, global R, global W; int xi, ai, bi, global_Ri, global Wi;
O O
int f (int argl, int arg2) { int fi (int argli, int arg2i) {
int local; int locali;
local = global R + argl, locali = global Ri + argli;
global W = local + arg2; global Wi = locali + arg2i;
return local, return locali;
} }

. = f(a,b): NP @,0):



Uninterpreted functions. example

Int X, a, b, global R, global W; int xi, ai, bi, global_Ri, global Wi;
O O
int f; int fi:

X =f; X =2*f;



Uninterpreted functions. example

Int X, a, b, global R, global W; int xi, ai, bi, global_Ri, global Wi;
O O

int f: int fi;

X =f; X =2*f;

Add the constraint:

(global R=globa R £a=a £b=Db") ¥ (globa W =globad W E£f=1)



Some questions we would like to answer

¢ Q: What If two functions are similar but not
syntactically the same ?

¢ Q: Once an error isfound, how do we let users
approve changes in an efficient way ?

‘ L B |



