
Case Study on Case Study on
Performance Tuning of Performance Tuning of

ApplicationsApplications

Gadi Haber
Vadim Eisenberg
Marcel Zalmanovici

IBM Haifa Labs

Source-level Performance TuningSource-level Performance Tuning

A way for identifying and resolving logical & A way for identifying and resolving logical &
algorithmic issues in performance early in development algorithmic issues in performance early in development
stagesstages

Enables to address performance issues throughout the Enables to address performance issues throughout the
development life cycledevelopment life cycle

Helps building an accurate performance modelingHelps building an accurate performance modeling

Performance tuning can start from Unit Test stage onPerformance tuning can start from Unit Test stage on

IBM Haifa Labs

Source-level Techniques for Handling Source-level Techniques for Handling
Performance IssuesPerformance Issues

Code Reordering & Code re-partitioningCode Reordering & Code re-partitioning
MemoizationMemoization
Function Inlining & SpecializationFunction Inlining & Specialization
Tuning Hot loops using history informationTuning Hot loops using history information
Field PackingField Packing
Software CachingSoftware Caching

IBM Haifa Labs

Identifying Performance IssuesIdentifying Performance Issues

When using When using representativerepresentative input workload, input workload,
logical profiling of the code can identifylogical profiling of the code can identify

Hot vs. Cold code Hot vs. Cold code
Hot loopsHot loops
Hot memory references of load instructionsHot memory references of load instructions
Hot I/O operationsHot I/O operations

IBM Haifa Labs

Code Reordering & Re-partitioning Code Reordering & Re-partitioning

Separating Hot code from Cold code Separating Hot code from Cold code - done by - done by
relocatingrelocating

rarely executed segments of coderarely executed segments of code
error-handling moduleserror-handling modules

Turning Hot code segments into functions - Turning Hot code segments into functions - for hot for hot
segments that are called from multiple placessegments that are called from multiple places
Performing memoization - Performing memoization - for computational for computational
functions or code segmentsfunctions or code segments
Function inlining & Specialization - Function inlining & Specialization - for functions that for functions that
are called from a single dominant siteare called from a single dominant site

IBM Haifa Labs

Tuning Hot LoopsTuning Hot Loops

Hot loops are characterized by:Hot loops are characterized by:

performing a large number of iterations performing a large number of iterations

being called a large number of times being called a large number of times

IBM Haifa Labs

Tuning Hot Loops - (continued)Tuning Hot Loops - (continued)

3 Important cases of Hot loops:3 Important cases of Hot loops:
1.1. loops performing a certain computationloops performing a certain computation

Maintain temporal computational results for future Maintain temporal computational results for future
loops' invocationsloops' invocations

2.2. loops performing heavy I/O operations loops performing heavy I/O operations
Map I/O into memory (when possible)Map I/O into memory (when possible)

3.3. loops searching in or traversing thru data structuresloops searching in or traversing thru data structures
 Maintain pointers to frequently referenced elements Maintain pointers to frequently referenced elements
to be used for future searches of the loopto be used for future searches of the loop

IBM Haifa Labs

0 10 20 30 40 50

Loop call count

0

10

20

30

40

50

60
Ite

ra
tio

n
N

um
be

r

Hot Loops - Bounded Behavior ExampleHot Loops - Bounded Behavior Example

IBM Haifa Labs

0 10 20 30 40 50 60

Loop call count

0

10

20

30

40

50

60

Ite
ra

tio
n

N
um

be
r

Hot Loops- Linear Behavior Example Hot Loops- Linear Behavior Example

IBM Haifa Labs

x->y = ...

Improving bottlenecks in Data $Improving bottlenecks in Data $

MemoryTwo possible cases of bottlenecks
1. Distances between referenced

addresses are large
2. The references pattern is

irregular

IBM Haifa Labs

Improving bottlenecks in data $ - (cont'd)Improving bottlenecks in data $ - (cont'd)

How to handle data $ bottlenecksHow to handle data $ bottlenecks
When the average stride between referenced When the average stride between referenced
memory addresses is large, i.e., the addresses are memory addresses is large, i.e., the addresses are
located far from one another located far from one another

Perform Field PackingPerform Field Packing
When no average stride exists, i.e., the instruction When no average stride exists, i.e., the instruction
"jumps" irregularly between memory locations "jumps" irregularly between memory locations

Perform software caching or replace the allocation Perform software caching or replace the allocation
algorithm of the referenced data structurealgorithm of the referenced data structure

