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Termination Analysis

Don’t try to solve the halting problem
but rather

Attempt to certify that a program 
terminates for a class of inputs…

or admit failure.



Program Analysis vs. 
Verification (or Testing)
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The classic approach
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The Classic Approach…
program point:  o,p,q,r

state (at a point): p(x,y).

convergent: maps to a 
well-founded domain.
ƒ : state à (D,<)

loop: a simple cycle in
the graph  «p,q,p»

o

p

r

q

∃∃ƒ.. ∀∀ loop loop . . ƒ decreasesdecreases on the loopon the loop

… to Proving Termination

ƒ



int ack (int x; int y) { 
/* Ackermann's function for x,y >= 0 */ 

if (x == 0) return y+1 
else if (y == 0) return  ack (x-1,1) 
else return ack (x-1, ack (x,y-1)); 

} 
ack ack

ack

ack

Another Example

f(ack(x,y)) = <x,y>
D = (NxN,<lex)

Three loops at 
the same 
program point

A global 
termination
convergentack(x,y)

x’=x-1x’=x
y’=y-1



Some notion of a computation?

. . .

p(40,15)         q(15,10)         p(10,5)           . . .

The sequence of program points with state of variables



Classic Correctness

..∃∃ƒ.. ∀∀ px )()( xfxf ′f

p q p r s p t p

ƒ



Summary   (Part I)

• Loops are defined syntactically
• Convergents are global
• The technique is sound
• The technique is complete

(“non-constructive”)

∃∃ƒ.. ∀∀ loop loop . . 
ƒ decreasesdecreases
on the loopon the loop

P terminates



One loop at a time
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A Semantic Notion of Loop

. . .

p(40,15)    q(15,10)         p(10,5) r(7,7)      p(5,5) ...



x=x-1y=y-1
x=x-3



A Semantic Notion of Loop
A pair of program states which visit 
at the same program point

Note that if p(a) à p(b) &  

p(b) à p(c)

are execution loops then so is

p(a) à p(c) 

There are typically infinitely 
many execution loops



Example:  Execution  Loops

int ack (int x; int y) { 
/* Ackermann's function for x,y >= 0 */ 

if (x == 0) return y+1 
else if (y == 0) return  ack (x-1,1) 
else return ack (x-1, ack (x,y-1)); 

} 

L
a

a
a
a

a
L

)2,0()1,1(

)3,0()2,1(
)1,0()0,1(
)0,1()1,1(

)1,1()2,1(

ackack

ackack
ackack
ackack

ackack

ack



I am going to skip the part where I explain how we
apply semantic based  program analysis to obtain a
finite approximation of  a program’s execution
loops.
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ack(A,B) g [C<A], ack(C,D).
ack(A,B) g [A=C,D<B] , ack(C,D). A,B,C,D >= 0

L
a

a
a
a

a
L

)2,0()1,1(
)3,0()2,1(
)1,0()0,1(
)0,1()1,1(
)1,1()2,1(

ackack
ackack
ackack
ackack
ackack

A      BA      B

C      DC      D

upper   - pre-loop
lower   - post-loop
edges  - size relations

Monotonicity constraints (Sagiv et al.)
Size Change Graphs (Jones et al.)



Loop descriptions 
are closed under 

composition

A     B
A     B

C     D

E     F E     F

A     B

C     D

E     F

A     B

E     F

Closing under 
composition can 

increase the number 
of descriptions 
exponentially

(Lee, Jones, Ben Amram, POPL 2001)



Proving termination one loop at a time
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Red Warning Lights ?

x’=x-1
y’=y+1

y’=y-1
x’=x+1

Local convergents:
f1(x,y) = x
f2(x,y) = y

No Local convergent

closure



int ack (int x; int y) { 
/* Ackermann's function for x,y >= 0 */ 

if (x == 0) return y+1 
else if (y == 0) return  ack (x-1,1) 
else return ack (x-1, ack (x,y-1)); 

end; 

Ackermann Again

Local convergents:
f1(ack(x,y)) = x
f2(ack(x,y)) = y

Global convergent:
f(ack(x,y)) = <x,y>

One might think 
that we could just 
tack together the 
local functions to 
get a global one.



Another Example

A global function?    

closure
f1(x,y)=x         f2(x,y)=x+y f3(x,y)=y         f4(x,y)=x 

<min(x,y),?,?><min(x,y),x>

A B

C D

min(A,B) = min(C,D)  &  A>D &  B=C ª A>C



TerminWeb

A Semantic Basis for 
Termination Analysis of 
Logic Programs (1997)

M. Codish and C. Taboch
(S. Genaim)

Termilog

Automatic Termination 
Analysis of Logic 
Programs (1996)

N. Lindenstrauss and Y. Sagiv
(N. Dershowitz, A. Serbrenik)

Systems based on “One Loop at a Time”

The Size-Change Principle 
for Program Termination 

(2001)
C. Lee, N. Jones and A. Ben-Amram



Correctness

∃∃ƒ.. )()( xfxf ′f
px ..∀∀

Does the condition

guarantee termination ?



p q p r s p t p

ƒ ƒ ƒ ƒ

We had:

Now we have:

p p p p

ƒ1 ƒ2 ƒ1
ƒ3



It could be simple:

p p

ƒ1

p

ƒ2

p

ƒ1

p

ƒ2

3f3f 3f

but then again … :

p p p p p p p p

ƒ3 ƒ1 ƒ4 ƒ1 ƒ5 ƒ9 ƒ2 ƒ8..
π = 3.1415928…



It is not sufficient to know that f1 reduces 
the size of the state infinitely often,…

p p p p p p p p

ƒ1 ƒ1 ƒ1



Ramsey’s Theorem (1930)

0 1 2 3 4 5

A = { [a,b] | a<b} pairs

L = {f1 , . . . fn } colors

F : A -> L    coloring



Ramsey’s Theorem

A = { [a,b] ∈ NxN | a<b}

L = {f1 , . . . fn } colors

F : A -> L    coloring

∃ infinite set X ⊆ N

∃ color  f ∈ L   s.t.

F(a,b)= f  forall a<b ∈X

i1 i2 i3 i4 i5



p p p p p p p p

ƒ3 ƒ1 ƒ4 ƒ1 ƒ5 ƒ9 ƒ2 ƒ8

Applying Ramsey’s Theorem

Somewhere along the line,…

i1 i2 i3 i4 i5



In the last two years all three groups independently 
gave proofs based on Ramsey’s Theorem. The 
result should be credited to:

A General Framework for the Automatic 
Termination Analysis of Logic Programs; Nachum
Dershowitz, Naomi Lindenstrauss, Yehoshua
Sagiv, Alexander Serebrenik; Applicable Algebra 
in Engineering, Communication and Computing;  
12, 117-156 (2001).

And the credit goes to . . . 

. . .  Dershowitz et al.  



Summary (Part II)

• Loops are defined semantically and approximated 
through program analysis.

• Convergents are local

• The technique is sound (assuming loops are closed 
under composition)

Correctness of the program analysis &
the argument based on Ramsey’s theorem
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Summary (Part II - continued)

• We have lost completeness (due to approximation)

• The technique is complete w.r.t. the approximation
If there exist convergents (local or global) which imply 
termination based on the loop descriptions then we can find 
them. (Constructive).
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A comparison
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Local Convergents are Simple

)(,)( ypxp π→

If there exists a function f such that

)()(| yfxf >=π

∑ ∈
=

Ii
ixxf )(

then there exists such a function of the form



Detecting the Existence of Local Convergents

)(,)( ypxp π→

)()(| yfxf >=πThere exists a function such that 

iff

)(,)( ypxp π→

1. adding up arrows leads to a cycle  (termilog).

R
Q



How hard is it to detect the existence 
of a global convergent?

look for local convergents instead …
(this implies the existence of a global convergent)

How hard is it to construct a global 
convergent ?

O(|loops|2) 

Both answers assume closure of loops!



Conjecture given a finite set of loop descriptions 

)(,)( ypxp π→

If there exists a global convergent then it is of the form

with each of the fi a sum, min or max of arguments.

)(,),()( 1 xfxfxf kK=

Local Convergents are Simple;
Global Convergents are not too Complex



Constructing a global convergent – part I

loop1
f1

loop2
f2

loop3
f3

loop
f

. . . satisfies that at least one of the loops 
decreases on f and none increase.

Choose f1, f2, f3  so that their composition . . . 



<f1, …>f1(x,y) = x
f2(x,y) = y

<f2, …>f1(x,y) = x
f2(x,y) = y

f1(x,y) = min(x,y)
f2(x,y) = min(x,y) <f1, …>



Now a global convergent can be 
constructed “efficiently” by 
ordering (some of) the local 
convergents as a tuple

loop1
f1

loop2
f2

loop3
f3

loop
f1

F(s) = <f1(s),…,fk(s)>

If f1 (it has to be one 
of those being 
composed) then

put it in the tuple and 
remove any loop(s) 
which decrease for f1

Start by composing 
all loops

“efficently” means in  the number of loops

Add new constraints; 
Repeat until no more 
loops



Example

f(x,y,z) = <min(x,y), . . . >



Example

f(x,y,z) = <min(x,y),     . . . >y



Example

f(x,y,z) = <min(x,y), y ,    >z



Example

f(x,y,z) = <min(x,y), y, z >



Conclusion

Local convergents are simplier

To find global convergents one needs also to
reason about local convergents

Exponential worst case cost for closure of loops 
under composition is rare in practice

We have looked at the case where size is described 
using monotonicity constraints

What about a richer abstract domain 
(linear constraints)?

(biased)



~mcodish/TerminWeb


