
Proving Termination
One Loop at a Time

Michael Codish
Dept. of Computer Science
Ben-Gurion University

Joint work with
Samir Genaim

Termination Analysis

Don’t try to solve the halting problem
but rather

Attempt to certify that a program
terminates for a class of inputs…

or admit failure.

Program Analysis vs.
Verification (or Testing)

)()(

)()(
)()(

,

,22

,11

ypxp

ypxp
ypxp

kk π

π
π

→

→
→

=

=

=

l
L

l
l

Proving
termination

approximation

Proving
termination

A semantic basis for the termination analysis of logic programs; Codish & Taboch.
Sixth International Conference on Algebraic and Logic Programming (1996)
JLP, 1999.

Combining Norms to Prove Termination; Genaim, Codish, Gallagher & Lagoon; 3rd

International Workshop on Verification, Model Checking and Abstract Interpretation

Reuse of Results in Termination Analysis of Typed Logic Programs; Bruynooghe, Codish,
Genaim &Vanhoof; 9th International Static Analysis Symposium (SAS 2002)

Termination analysis through the combination of type based norms; Bruynooghe, Codish,
Gallagher, Genaim & Vanhoof. submitted, 2003.

One Loop at a Time; Codish, Genaim, Bruynooghe, Gallagher and Vanhoof; 6th
International Workshop on Termination (WST 2003)

http://www.cs.bgu.ac.il/~mcodish/

http://www.cs.bgu.ac.il/~mcodish/

Outline of the Talk

The classic approach

Proving termination one loop at a time

A comparison

Prelim
inary resu

lts

The classic approach

1

The Classic Approach…
program point: o,p,q,r

state (at a point): p(x,y).

convergent: maps to a
well-founded domain.
ƒ : state à (D,<)

loop: a simple cycle in
the graph «p,q,p»

o

p

r

q

∃∃ƒ.. ∀∀ loop loop . . ƒ decreasesdecreases on the loopon the loop

… to Proving Termination

ƒ

int ack (int x; int y) {
/* Ackermann's function for x,y >= 0 */

if (x == 0) return y+1
else if (y == 0) return ack (x-1,1)
else return ack (x-1, ack (x,y-1));

}
ack ack

ack

ack

Another Example

f(ack(x,y)) = <x,y>
D = (NxN,<lex)

Three loops at
the same
program point

A global
termination
convergentack(x,y)

x’=x-1x’=x
y’=y-1

Some notion of a computation?

. . .

p(40,15) q(15,10) p(10,5) . . .

The sequence of program points with state of variables

Classic Correctness

..∃∃ƒ.. ∀∀ px)()(xfxf ′f

p q p r s p t p

ƒ

Summary (Part I)

• Loops are defined syntactically
• Convergents are global
• The technique is sound
• The technique is complete

(“non-constructive”)

∃∃ƒ.. ∀∀ loop loop . .
ƒ decreasesdecreases
on the loopon the loop

P terminates

One loop at a time

2

A Semantic Notion of Loop

. . .

p(40,15) q(15,10) p(10,5) r(7,7) p(5,5) ...

x=x-1y=y-1
x=x-3

A Semantic Notion of Loop
A pair of program states which visit
at the same program point

Note that if p(a) à p(b) &

p(b) à p(c)

are execution loops then so is

p(a) à p(c)

There are typically infinitely
many execution loops

Example: Execution Loops

int ack (int x; int y) {
/* Ackermann's function for x,y >= 0 */

if (x == 0) return y+1
else if (y == 0) return ack (x-1,1)
else return ack (x-1, ack (x,y-1));

}

L
a

a
a
a

a
L

)2,0()1,1(

)3,0()2,1(
)1,0()0,1(
)0,1()1,1(

)1,1()2,1(

ackack

ackack
ackack
ackack

ackack

ack

I am going to skip the part where I explain how we
apply semantic based program analysis to obtain a
finite approximation of a program’s execution
loops.

)()(

)()(
)()(

,

,22

,11

ypxp

ypxp
ypxp

kk π

π
π

→

→
→

=

=

=

l
L

l
l

ack(A,B) g [C<A], ack(C,D).
ack(A,B) g [A=C,D<B] , ack(C,D). A,B,C,D >= 0

L
a

a
a
a

a
L

)2,0()1,1(
)3,0()2,1(
)1,0()0,1(
)0,1()1,1(
)1,1()2,1(

ackack
ackack
ackack
ackack
ackack

A BA B

C DC D

upper - pre-loop
lower - post-loop
edges - size relations

Monotonicity constraints (Sagiv et al.)
Size Change Graphs (Jones et al.)

Loop descriptions
are closed under

composition

A B
A B

C D

E F E F

A B

C D

E F

A B

E F

Closing under
composition can

increase the number
of descriptions
exponentially

(Lee, Jones, Ben Amram, POPL 2001)

Proving termination one loop at a time

∃∃ƒ..)()(yfxf fpx∀∀ ..
)()(

)()(
)()(

,

,22

,11

ypxp

ypxp
ypxp

kk π

π
π

→

→
→

=

=

=

l
L

l
l

Red Warning Lights ?

x’=x-1
y’=y+1

y’=y-1
x’=x+1

Local convergents:
f1(x,y) = x
f2(x,y) = y

No Local convergent

closure

int ack (int x; int y) {
/* Ackermann's function for x,y >= 0 */

if (x == 0) return y+1
else if (y == 0) return ack (x-1,1)
else return ack (x-1, ack (x,y-1));

end;

Ackermann Again

Local convergents:
f1(ack(x,y)) = x
f2(ack(x,y)) = y

Global convergent:
f(ack(x,y)) = <x,y>

One might think
that we could just
tack together the
local functions to
get a global one.

Another Example

A global function?

closure
f1(x,y)=x f2(x,y)=x+y f3(x,y)=y f4(x,y)=x

<min(x,y),?,?><min(x,y),x>

A B

C D

min(A,B) = min(C,D) & A>D & B=C ª A>C

TerminWeb

A Semantic Basis for
Termination Analysis of
Logic Programs (1997)

M. Codish and C. Taboch
(S. Genaim)

Termilog

Automatic Termination
Analysis of Logic
Programs (1996)

N. Lindenstrauss and Y. Sagiv
(N. Dershowitz, A. Serbrenik)

Systems based on “One Loop at a Time”

The Size-Change Principle
for Program Termination

(2001)
C. Lee, N. Jones and A. Ben-Amram

Correctness

∃∃ƒ..)()(xfxf ′f
px ..∀∀

Does the condition

guarantee termination ?

p q p r s p t p

ƒ ƒ ƒ ƒ

We had:

Now we have:

p p p p

ƒ1 ƒ2 ƒ1
ƒ3

It could be simple:

p p

ƒ1

p

ƒ2

p

ƒ1

p

ƒ2

3f3f 3f

but then again … :

p p p p p p p p

ƒ3 ƒ1 ƒ4 ƒ1 ƒ5 ƒ9 ƒ2 ƒ8..
π = 3.1415928…

It is not sufficient to know that f1 reduces
the size of the state infinitely often,…

p p p p p p p p

ƒ1 ƒ1 ƒ1

Ramsey’s Theorem (1930)

0 1 2 3 4 5

A = { [a,b] | a<b} pairs

L = {f1 , . . . fn } colors

F : A -> L coloring

Ramsey’s Theorem

A = { [a,b] ∈ NxN | a<b}

L = {f1 , . . . fn } colors

F : A -> L coloring

∃ infinite set X ⊆ N

∃ color f ∈ L s.t.

F(a,b)= f forall a<b ∈X

i1 i2 i3 i4 i5

p p p p p p p p

ƒ3 ƒ1 ƒ4 ƒ1 ƒ5 ƒ9 ƒ2 ƒ8

Applying Ramsey’s Theorem

Somewhere along the line,…

i1 i2 i3 i4 i5

In the last two years all three groups independently
gave proofs based on Ramsey’s Theorem. The
result should be credited to:

A General Framework for the Automatic
Termination Analysis of Logic Programs; Nachum
Dershowitz, Naomi Lindenstrauss, Yehoshua
Sagiv, Alexander Serebrenik; Applicable Algebra
in Engineering, Communication and Computing;
12, 117-156 (2001).

And the credit goes to . . .

. . . Dershowitz et al.

Summary (Part II)

• Loops are defined semantically and approximated
through program analysis.

• Convergents are local

• The technique is sound (assuming loops are closed
under composition)

Correctness of the program analysis &
the argument based on Ramsey’s theorem

)()(

)()(
)()(

,

,22

,11

ypxp

ypxp
ypxp

kk π

π
π

→

→
→

=

=

=

l
L

l
l

Proving
termination

approximation

Summary (Part II - continued)

• We have lost completeness (due to approximation)

• The technique is complete w.r.t. the approximation
If there exist convergents (local or global) which imply
termination based on the loop descriptions then we can find
them. (Constructive).

)()(

)()(
)()(

,

,22

,11

ypxp

ypxp
ypxp

kk π

π
π

→

→
→

=

=

=

l
L

l
l

Proving
termination

approximation

A comparison

3

Local Convergents are Simple

)(,)(ypxp π→

If there exists a function f such that

)()(| yfxf >=π

∑ ∈
=

Ii
ixxf)(

then there exists such a function of the form

Detecting the Existence of Local Convergents

)(,)(ypxp π→

)()(| yfxf >=πThere exists a function such that

iff

)(,)(ypxp π→

1. adding up arrows leads to a cycle (termilog).

R
Q

How hard is it to detect the existence
of a global convergent?

look for local convergents instead …
(this implies the existence of a global convergent)

How hard is it to construct a global
convergent ?

O(|loops|2)

Both answers assume closure of loops!

Conjecture given a finite set of loop descriptions

)(,)(ypxp π→

If there exists a global convergent then it is of the form

with each of the fi a sum, min or max of arguments.

)(,),()(1 xfxfxf kK=

Local Convergents are Simple;
Global Convergents are not too Complex

Constructing a global convergent – part I

loop1
f1

loop2
f2

loop3
f3

loop
f

. . . satisfies that at least one of the loops
decreases on f and none increase.

Choose f1, f2, f3 so that their composition . . .

<f1, …>f1(x,y) = x
f2(x,y) = y

<f2, …>f1(x,y) = x
f2(x,y) = y

f1(x,y) = min(x,y)
f2(x,y) = min(x,y) <f1, …>

Now a global convergent can be
constructed “efficiently” by
ordering (some of) the local
convergents as a tuple

loop1
f1

loop2
f2

loop3
f3

loop
f1

F(s) = <f1(s),…,fk(s)>

If f1 (it has to be one
of those being
composed) then

put it in the tuple and
remove any loop(s)
which decrease for f1

Start by composing
all loops

“efficently” means in the number of loops

Add new constraints;
Repeat until no more
loops

Example

f(x,y,z) = <min(x,y), . . . >

Example

f(x,y,z) = <min(x,y), . . . >y

Example

f(x,y,z) = <min(x,y), y , >z

Example

f(x,y,z) = <min(x,y), y, z >

Conclusion

Local convergents are simplier

To find global convergents one needs also to
reason about local convergents

Exponential worst case cost for closure of loops
under composition is rare in practice

We have looked at the case where size is described
using monotonicity constraints

What about a richer abstract domain
(linear constraints)?

(biased)

~mcodish/TerminWeb

