
IBM Labs in Haifa © 2003 IBM Corporation

Interleaving Review Technique

Shachar Fienblit

December 18, 2003

IBM Labs in Haifa

© 2003 IBM Corporation2 IRT 12/03

Outline

� Motivation
� The Interleaving Review Technique
� Adaptation
� Method Details
� Example
� Guidelines for the Devil’s Advocate
� Summary

IBM Labs in Haifa

© 2003 IBM Corporation3 IRT 12/03

Motivation – What Is The Problem?

� Concurrency and fault tolerance related problems are hard to find
� Costly (usually found late in system testing)
� Difficult to recreate and debug

� Complex scenarios
� Error and exception paths

� Unfortunately often found at customers’ site
� Finding problems as early as possible

� During design and coding
� In addition to the traditional reviews and testing tools

� Need a method for wide audience
� Lightweight
� Language and platform independent
� Cost effective immediately

IBM Labs in Haifa

© 2003 IBM Corporation4 IRT 12/03

The Interleaving Review Technique

� Derivation of the walkthrough technique
� Design review and code review oriented at

� Concurrency
� Fault tolerance

� In addition to traditional review
� Helps in test plan design

� Provides a lightweight concurrency oriented code verification technique
� In addition to conTest which provides a testing environment for

concurrency problems

IBM Labs in Haifa

© 2003 IBM Corporation5 IRT 12/03

Adaptation

� Tried successfully by middleware projects in IBM
� Found additional problems in already reviewed code each time

used
� Small extra effort

� Adopted for use in all new code developed
� Developers see the benefit
� Learning curve is fast

� Some statistics gathered

IBM Labs in Haifa

© 2003 IBM Corporation6 IRT 12/03

IRT Statistics from experiments with already reviewed code

Two developers2 bugs, 4 code
modifications

5Group communication

Two developers1 design, 2
bugs, 17 code
modifications

10Group communication

Three developers23Cluster device drivers

Two developers12Cluster device drivers

Two developers11Cluster device drivers

Two developers412Cluster device drivers

Five developers. Was
done after six hours of
regular reviews

1510Cluster device drivers

Two developers22Cluster device drivers

CommentsNumber of
bugs found

Overall time spent
(hours for all
developers)

Project type

IBM Labs in Haifa

© 2003 IBM Corporation7 IRT 12/03

Desk checking

� An extremely effective code review technique used for early detection of
sequential program errors
� Desk checking means manual execution of the program and writing

the tests first
� The system behavior is reviewed

� Introduced in 1974 by C.A.R. Hoare in his structured programming
course
� “The first principle of error detection is that the sooner an error is

detected the less trouble it will cause”
� Back then most written programs were sequential

IBM Labs in Haifa

© 2003 IBM Corporation8 IRT 12/03

A toy example of desk checking

� Program definition – sum up the
positive integers that are smaller
than j

� Program segment

int sum = -1;
int j = 0;
read(j); //The user inputs j
for(int i = 0;i < j; i++)

sum = sum + i;

� Tracing of test data j = 1
� Bug found – sum = -1 at the end

sum + isum =

10-1

i++

11-1

10-1

is true(i < j)

Is falsei < j

i = 0

10

jI sumcontrol

0-1

read(j)

IBM Labs in Haifa

© 2003 IBM Corporation9 IRT 12/03

The problems IRT (Interleaving Review Technique) addresses

� When attempting to review or test the system behavior of a
concurrent/distributed and fault tolerant system several problems arise
� Non-determinism

� Given that the program is in some state, the next program state is
depended on which process executes next
� As a result it is not clear how to proceed with the review process

� The space of possible program schedules, sometimes called the
space of possible interleavings is exponential

� It is hard to recreate failures

IBM Labs in Haifa

© 2003 IBM Corporation10 IRT 12/03

The problems IRT addresses (continued)

� The state of the concurrent or distributed program is determined by the
state of all its processes and their interrelated temporal dependencies
� 3 processes with 10 states have 1000 possible states to review

� Tests are much more expensive
� Require the interaction of many machines and failures in

predetermined sequences

IBM Labs in Haifa

© 2003 IBM Corporation11 IRT 12/03

IRT Consists of

� The use of the Cartesian product technique to select interleavings and
states to review (FoCus)

� Definition of review roles and guideline to carrying out the roles
� Program counter – needs to thoroughly understand the system so

he can determine the control flow
� Devil’s advocate – experienced in concurrent and fault tolerance

systems. His role is to make choices as to the timing of events and
failures
� To maximize the probability that a bug is found
� IRT provides guidelines for making these choices

� Stenographer – experienced in representation techniques (use
cases, sequential diagram, time diagrams, etc) and able to strike a
trade-off between accuracy and readability

IBM Labs in Haifa

© 2003 IBM Corporation12 IRT 12/03

IRT Consists of (Continued)

� The same scenarios are reviewed in more and more details as the
development cycle progresses and
� Are finally used as a base to preparing the test plan

� Functional coverage is used to determine if the test plan was carried out
� Simulator is used to facilitate the review

� Supporting tools should be developed to support execution through
user interaction when only part of the system state is known

� Note: the review is beneficial in the absence of a simulator

IBM Labs in Haifa

© 2003 IBM Corporation13 IRT 12/03

Why let a different process advance after a lock is obtained?

� The devil’s advocate decides that another process/thread advances right
after or before a synchronization operation is performed
�He also make sure that locks are waited on

� Most of the synchronization primitives require that all processes
accessing the shared resource follow the protocol
�Thus, obtaining the lock does not guarantee protection if other

processes are not attempting to obtain the same lock
� This choice method significantly decreases the number of interleaving to

consider for review

IBM Labs in Haifa

© 2003 IBM Corporation14 IRT 12/03

A toy IRT example – who is the king?

� Code segment executed by several processes with the objective of
choosing a leader processor

boolean chosen= false; // global variable used for process coordination
boolean ImAKing = false; // local – indicates the current process status
if (chosen == false) {

lock();
chosen = true;
ImAKing = true;

unlock();
}

IBM Labs in Haifa

© 2003 IBM Corporation15 IRT 12/03

An IRT example – who is the king?

falsefalsefalse Program counter -
start executing

Devil advocate –
advance second

falsefalsefalse If(chosen == false)
Is true

falsefalsefalse lock()

Process two
ImAKing

Process
one
ImAKing

Chosen Process two Process one

falsefalsetruechosen = true;

falsefalsefalse If(chosen == false)
Is true

Time

IBM Labs in Haifa

© 2003 IBM Corporation16 IRT 12/03

An IRT example – who is the king?

truetruetrueImAKing = true

truefalsetrueImAKing = true

Devil’s advocate –
advance first

truefalsetruelock()

truefalsetruechosen = true;

Process two
ImAKing

Process
one
ImAKing

Chosen Process two Process one

truetruetrueunlock()

unlock()

Time

IBM Labs in Haifa

© 2003 IBM Corporation17 IRT 12/03

Some Guidelines for the Devil’s Advocate
� Increase contention on shared resources
� Delay locks so that locks are obtained in different orders
� While in critical section

� Force error paths, assume that potentially blocked operations are
blocked and cause signals and interrupts to occur

� Cover all possible scenarios of waiting on event
� Event notification is sent

� Before and after the event is waited on

� If waiting on event is not atomic - event notification is sent after the
event is checked and before it is waited on

� Break assumption that depend on hardware and scheduler
� Assume that delays are not long enough
� Assume that changes are not visible due to the memory model

� Based on concurrent bug pattern paper (PADTAD2003)

IBM Labs in Haifa

© 2003 IBM Corporation18 IRT 12/03

Summary

� Effective lightweight method to increase quality
� Cost effective
� Benefits are evident from first proper use

� Support “quality culture”
� Quality by design

� Tried successfully by two significant products

