Interleaving Review Technique

Shachar Fienblit

December 18, 2003

IBM Labs in Haifa © 2003 IBM Corporation

Outline

&
@
@
&
&
&
@

Motivation

The Interleaving Review Technique
Adaptation

Method Details

Example

Guidelines for the Devil’'s Advocate
Summary

IRT 12/03

© 2003 IBM Corporation

Motivation — What Is The Problem?

© Concurrency and fault tolerance related problems are hard to find
® Costly (usually found late in system testing)

@ Difficult to recreate and debug
©® Complex scenarios
< Error and exception paths

® Unfortunately often found at customers’ site
® Finding problems as early as possible

@ During design and coding

@ In addition to the traditional reviews and testing tools
©® Need a method for wide audience

® Lightweight

® Language and platform independent

® Cost effective immediately

3 | IRT 12/03 © 2003 IBM Corporation

The Interleaving Review Technique

® Derivation of the walkthrough technique
® Design review and code review oriented at
© Concurrency
© Fault tolerance
® In addition to traditional review
® Helps in test plan design
@ Provides a lightweight concurrency oriented code verification technique

® In addition to conTest which provides a testing environment for
concurrency problems

4 | IRT 12/03 © 2003 IBM Corporation

Adaptation

@ Tried successfully by middleware projects in IBM

® Found additional problems in already reviewed code each time
used

® Small extra effort

© Adopted for use in all new code developed
® Developers see the benefit
® Learning curve is fast

©® Some statistics gathered

5 | IRT 12/03 © 2003 IBM Corporation

@ | IBM Labs in Haifa

IRT Statistics from experiments with already reviewed code

Project type Overall time spent Number of Comments
(hours for all bugs found
developers)
Cluster device drivers | 2 2 Two developers
Cluster device drivers | 10 15 Five developers. Was
done after six hours of
regular reviews
Cluster device drivers | 12 4 Two developers
Cluster device drivers | 1 1 Two developers
Cluster device drivers | 2 1 Two developers
Cluster device drivers | 3 2 Three developers
Group communication | 10 1 design, 2 Two developers
bugs, 17 code
modifications
Group communication | 5 2 bugs, 4 code | Two developers

modifications

IRT 12/03

© 2003 IBM Corporation

Desk checking

@ An extremely effective code review technique used for early detection of
sequential program errors

® Desk checking means manual execution of the program and writing
the tests first

® The system behavior is reviewed

© Introduced in 1974 by C.A.R. Hoare in his structured programming
course

@ “The first principle of error detection is that the sooner an error is
detected the less trouble it will cause”

® Back then most written programs were sequential

7 | IRT 12/03 © 2003 IBM Corporation

A toy example of desk checking

© Program definition — sum up the
positive integers that are smaller
than j

® Program segment

int sum = -1;
intj=0;
read(j); //The user inputs |
for(inti=0;i <j; i++)
sum = sum + i;

® Tracing of test data j = 1
® Bug found — sum = -1 at the end

control | sum j

-1 0
read(j)

0 1
=0

-1 1
(i<]) is true
sum = |sum + i

-1 1
I++

-1 1
| <] |s false

IRT 12/03

© 2003 IBM Corporation

The problems IRT (Interleaving Review Technique) addresses

® When attempting to review or test the system behavior of a
concurrent/distributed and fault tolerant system several problems arise

©® Non-determinism

® Given that the program is in some state, the next program state is
depended on which process executes next

<& As aresult it is not clear how to proceed with the review process

@ The space of possible program schedules, sometimes called the
space of possible interleavings is exponential

@ ltis hard to recreate failures

9 | IRT 12/03 © 2003 IBM Corporation

The problems IRT addresses (continued)

@ The state of the concurrent or distributed program is determined by the
state of all its processes and their interrelated temporal dependencies

® 3 processes with 10 states have 1000 possible states to review
® Tests are much more expensive

® Require the interaction of many machines and failures in
predetermined sequences

10 | IRT 12/03 ~ ©2003 IBM Corporation

IRT Consists of

@ The use of the Cartesian product technique to select interleavings and
states to review (FoCus)

@ Definition of review roles and guideline to carrying out the roles

€ Program counter — needs to thoroughly understand the system so
he can determine the control flow
® Devil’s advocate — experienced in concurrent and fault tolerance
systems. His role is to make choices as to the timing of events and
failures
® To maximize the probability that a bug is found
< IRT provides guidelines for making these choices
® Stenographer — experienced in representation techniques (use
cases, sequential diagram, time diagrams, etc) and able to strike a
trade-off between accuracy and readability

11 | IRT 12/03 ~ ©2003 IBM Corporation

IRT Consists of (Continued)

© The same scenarios are reviewed in more and more details as the
development cycle progresses and

@ Are finally used as a base to preparing the test plan
€ Functional coverage is used to determine if the test plan was carried out
© Simulator is used to facilitate the review

® Supporting tools should be developed to support execution through
user interaction when only part of the system state is known

© Note: the review is beneficial in the absence of a simulator

IRT 12/03 © 2003 IBM Corporation

Why let a different process advance after a lock is obtained?

€ The devil’s advocate decides that another process/thread advances right
after or before a synchronization operation is performed

@® He also make sure that locks are waited on

® Most of the synchronization primitives require that all processes
accessing the shared resource follow the protocol

® Thus, obtaining the lock does not guarantee protection if other
processes are not attempting to obtain the same lock

® This choice method significantly decreases the number of interleaving to
consider for review

13 | IRT 12/03 ~ ©2003 IBM Corporation

A toy IRT example — who is the king?

@ Code segment executed by several processes with the objective of
choosing a leader processor

boolean chosen= false; // global variable used for process coordination
boolean IMAKing = false; // local — indicates the current process status
if (chosen == false) {

lock();
chosen = true;
ImAKing = true;

unlock();

}

IRT 12/03 © 2003 IBM Corporation

@ | IBM Labs in Haifa

An IRT example — who is the king?

Time

15

Process one Process two Chosen | Process Process two
onée ImAKing
ImAKing
Program counter - false false false
start executing
If(chosen == false) false false false
Is true
Devil advocate —
advance second
If(chosen == false) | false false false
Is true
lock() false false false
chosen = true; true false false

IRT 12/03

© 2003 IBM Corporation

@ | IBM Labs in Haifa

An IRT example — who is the king?

T Process one Process two Chosen | Process Process two
Ime one ImAKing
ImAKing
ImAKing = true true false true
unlock()

Devil’s advocate —
advance first

lock() true false true
v chosen = true; true false true
ImAKing = true true true true
unlock() true true true

16 | IRT 12/03 ~ ©2003 IBM Corporation

Some Guidelines for the Devil’'s Advocate

€ Increase contention on shared resources
@ Delay locks so that locks are obtained in different orders
€ While in critical section

@ Force error paths, assume that potentially blocked operations are
blocked and cause signals and interrupts to occur

@ Cover all possible scenarios of waiting on event

@® Event notification is sent
& Before and after the event is waited on

@ If waiting on event is not atomic - event notification is sent after the
event is checked and before it is waited on

@ Break assumption that depend on hardware and scheduler

@ Assume that delays are not long enough

® Assume that changes are not visible due to the memory model
© Based on concurrent bug pattern paper (PADTAD2003)

17 | IRT 12/03 ~ ©2003 IBM Corporation

Summary

® Effective lightweight method to increase quality
@ Cost effective
® Benefits are evident from first proper use
© Support “quality culture”
@ Quality by design
© Tried successfully by two significant products

18 |

IRT 12/03

© 2003 IBM Corporation

