
Productivity Tools and UML Productivity Tools and UML
Execution FrameworkExecution Framework

2nd IBM Software Testing and Verification Seminar
Haifa

December 18 2003
Alan Hartman

IBM Israel

AgendaAgenda

• AGEDIS Project
• Tool Architecture
• UML Execution
• Feedback Tools

AGEDIS OverviewAGEDIS Overview

• Automated model-based test Generation and
Execution for DIStributed systems

• Methodology and tools for model-based testing
• Open interfaces
• Mixture of academic and industrial partners
• Three phase timetable of experiment and

development
• November 2001- February 2004

Consortium PartnersConsortium Partners

• IBM Haifa Research Lab
• Oxford University
• VERIMAG/IRISA
• Imbus
• France Telecom
• IBM UK
• Intrasoft International

Architecture & MethodologyArchitecture & Methodology

AGEDIS ArchitectureAGEDIS Architecture
G

U
I

&
 P

ro
du

ct
iv

ity
 A

id
s Model

Generation
Directives

Execution
Directives

Compiler Intermediate
Format

Simulator

Generator

Abstract
Test Suite

Suite
Execution

Trace

Analyzers

Visualizer
Editor

Execution

AGEDIS MethodologyAGEDIS Methodology

Specs FSM
Model

Abstract
Test
Suite

Executable
Test
Suite

Model

Trace

Generate Translate

R
un

Design
Bugs

Interface
Bugs

Code
Bugs

Analyze & Feedback

BenefitsBenefits
• Starting from specification

– Involves testers early in the development process
– Teams testers with developers
– Forces testability into product design

• Building behavioural model and test interface
– Finds design and specification bugs - before code exists
– The model is the test plan - and is easily maintained

• Automated test suite generation
– Coverage is guaranteed - increases testing thoroughness
– Matches coverage goals to testing budget
– Zero test suite maintenance costs

• Automated test suite execution
– Finds code and interface bugs
– Includes a framework for the testing of distributed applications
– Reduces test execution costs

InterfacesInterfaces

• UML Profile for AGEDIS
• Test Generation Directives
• Test Execution Directives
• IF Model Execution Interface
• Abstract Test Suite
• Suite Execution Trace

UML

TGD

TED

IF

ATS

SET

User Modeling InterfaceUser Modeling Interface

• The AGEDIS Modeling Language is a
profile for UML 1.4:
– UML Class diagrams - structure
– UML Object diagrams - snapshots
– UML State diagrams – behaviour & test

purposes

• Annotated with an action language – IF

Test Suite and Trace InterfaceTest Suite and Trace Interface

• XML schema – for test execution and
tracing

• Model description
– classes : constants, types, control & observable

signatures
– a special class is defined for the tester
– object identities

• Test Suite - set of test cases
• Test Trace – record of executed test cases

ToolsTools

• User Interface
• Modeler & Model Compiler
• Model Simulator
• Test Generator
• Test Execution Engine
• Test Suite/Trace Viewer/Editor
• Feedback & Analysis
• Bug Reporter
• Report Generator

U
I &

 R
G

C
S
G

FA

VE
EE

GUIGUI

ModelingModeling Tool & CompilerTool & Compiler

• Objecteering UML
modeling tool

• Tool profile to convert
to XML

• General purpose XML
to IF compiler
– Written in Java, with

XMI in mind as a
future input format

UML Model Execution DialogUML Model Execution Dialog

UML Execution FrameworkUML Execution Framework

• Upper window lists all available actions
• The tick symbol indicates that input is required

from the environment (tester).
• Tester chooses the appropriate input
• Model responds with actions (user chooses from

the non-deterministic alternatives)
• Until next tick point
• Outputs message sequence chart in lower window

Feedback & Analysis ToolsFeedback & Analysis Tools

• Coverage analysis
– Detect uncovered areas of the model in

either test suite or test trace
– Create test purposes to reach them
– Invokes FoCus, a functional coverage

tool from www.alphaworks.com

• Defect analysis
– Clustering of defects
– Feature extraction from clusters
– Create test purposes to reproduce the bug

Abstract Test SuiteAbstract Test Suite

Coverage AnalysisCoverage Analysis

• Collects statistics on
– Methods called, including parameter values
– Observable variable values
– Return values
– Exceptions

• Also on sequences of the above
• Creates test purposes on least frequently

covered sequences

Defect AnalysisDefect Analysis

• A defect trace is seen as a sequence of stimuli and
observations which culminate in an exception or an
observation conflict with the model

• Distance between sequences is defined by weighted
measures depending on distance from the defect and equal
stimuli

• E.g. s1o1s2o2e1 is different from s1o1s3o2e1, but close,
whereas s1o3s4o4e1 is more different

• Clusters are formed from the distance matrix
• Experimental work still ongoing to determine good

distance measures

AGEDISAGEDIS’’ Future PlansFuture Plans

• Finishing Touches
• Exploitation Activity
• Incorporation in wider Model Driven SE

Effort

Thanks to:Thanks to:

• A. Ramfos., S. Liapis, N.
Giannelos, A. Hondouridakis,
M. Sardis, K. Bechrakis, V.
Akousi-Krivki

• K. Dussa-Zieger, J. Trost, B.
Nossem, T. Linz, B. Mattern,
J. Hofer, H. Raessler, T.
Rossner,

• I. Craggs, I. Griffiths
• Y.-M. Quemener, D. Vincent,

T. Heuillard, N. Moteau
• A.Bertolino, A. Wills, S. Reid

• K. Nagin, O. Edelstein, A.
Kirshin, S. Olvovsky, M.
Berg, L. Raskin, T.
Shiran, C. Sacharen, M.
Barshay, D. Neimer

• L. Mounier, M. Bozga, Y.
Lakhnech

• T. Jeron, E. Demairy, V.
Tschaen

• J. Davies, A. Cavarra, C.
Crichton, J. Woodcock,
M. Field

