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AgendaAgenda

• AGEDIS Project
• Tool Architecture
• UML Execution
• Feedback Tools



AGEDIS OverviewAGEDIS Overview

• Automated model-based test Generation and 
Execution for DIStributed systems

• Methodology and tools for model-based testing
• Open interfaces
• Mixture of academic and industrial partners
• Three phase timetable of experiment and 

development
• November 2001- February 2004



Consortium PartnersConsortium Partners

• IBM Haifa Research Lab
• Oxford University
• VERIMAG/IRISA
• Imbus
• France Telecom
• IBM UK
• Intrasoft International



Architecture & MethodologyArchitecture & Methodology



AGEDIS ArchitectureAGEDIS Architecture
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AGEDIS MethodologyAGEDIS Methodology
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BenefitsBenefits
• Starting from specification

– Involves testers early in the development process 
– Teams testers with developers
– Forces testability into product design

• Building behavioural model and test interface
– Finds design and specification bugs - before code exists
– The model is the test plan - and is easily maintained

• Automated test suite generation
– Coverage is guaranteed - increases testing thoroughness
– Matches coverage goals to testing budget
– Zero test suite maintenance costs

• Automated test suite execution
– Finds code and interface bugs
– Includes a framework for the testing of distributed applications
– Reduces test execution costs 



InterfacesInterfaces

• UML Profile for AGEDIS
• Test Generation Directives
• Test Execution Directives
• IF Model Execution Interface
• Abstract Test Suite
• Suite Execution Trace
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User Modeling InterfaceUser Modeling Interface

• The AGEDIS Modeling Language is a 
profile for UML 1.4:
– UML Class diagrams - structure
– UML Object diagrams - snapshots
– UML State diagrams – behaviour & test 

purposes

• Annotated with an action language – IF



Test Suite and Trace InterfaceTest Suite and Trace Interface

• XML schema – for test execution and
tracing

• Model description
– classes : constants, types, control & observable 

signatures
– a special class is defined for the tester
– object identities

• Test Suite - set of test cases
• Test Trace – record of executed test cases



ToolsTools

• User Interface
• Modeler & Model Compiler
• Model Simulator
• Test Generator
• Test Execution Engine
• Test Suite/Trace Viewer/Editor
• Feedback & Analysis
• Bug Reporter
• Report Generator
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ModelingModeling Tool & CompilerTool & Compiler

• Objecteering UML 
modeling tool

• Tool profile to convert 
to XML

• General purpose XML 
to IF compiler
– Written in Java, with 

XMI in mind as a 
future input format



UML Model Execution DialogUML Model Execution Dialog



UML Execution FrameworkUML Execution Framework

• Upper window lists all available actions
• The tick symbol indicates that input is required 

from the environment (tester).
• Tester chooses the appropriate input
• Model responds with actions (user chooses from 

the non-deterministic alternatives)
• Until next tick point
• Outputs message sequence chart in lower window



Feedback & Analysis ToolsFeedback & Analysis Tools

• Coverage analysis
– Detect uncovered areas of the model in 

either test suite or test trace
– Create test purposes to reach them
– Invokes FoCus, a functional coverage 

tool from www.alphaworks.com

• Defect analysis
– Clustering of defects
– Feature extraction from clusters
– Create test purposes to reproduce the bug



Abstract Test SuiteAbstract Test Suite



Coverage AnalysisCoverage Analysis

• Collects statistics on
– Methods called, including parameter values
– Observable variable values
– Return values
– Exceptions

• Also on sequences of the above
• Creates test purposes on least frequently 

covered sequences



Defect AnalysisDefect Analysis

• A defect trace is seen as a sequence of stimuli and 
observations which culminate in an exception or an 
observation conflict with the model

• Distance between sequences is defined by weighted 
measures depending on distance from the defect and equal 
stimuli

• E.g. s1o1s2o2e1 is different from s1o1s3o2e1, but close, 
whereas s1o3s4o4e1 is more different

• Clusters are formed from the distance matrix
• Experimental work still ongoing to determine good 

distance measures



AGEDISAGEDIS’’ Future PlansFuture Plans

• Finishing Touches
• Exploitation Activity
• Incorporation in wider Model Driven SE 

Effort
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