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Atomicity  

The effect of an atomic code block can be 
considered in isolation from the rest of a running 
program.

• enables sequential reasoning

• atomicity violations often represent 
synchronization errors

• most methods are atomic

3Monday, July 27, 2009



Analyzing for Atomicity  

Generalization Precision

• online/dynamic

• generalizes

• no false alarms
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Thread 2
synchronized(m){

  newVar = 0;

}

acquire(n)

t1 = bal

release(n)

acquire(m)

newVar = 0

release(m)

Thread 1 Thread 2
Thread 1
atomic{

synchronized(n){

tmp = bal;

}

synchronized(n){

bal = tmp + 1;

}

}

begin

acquire(n)

bal = t + 1

release(n)

end

Serial Trace: Each atomic block 
executes contiguously
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Thread 2
synchronized(m){

  newVar = 0;

}

acquire(n)

t1 = bal

release(n)

acquire(m)

newVar = 0

release(m)

Thread 1 Thread 2
Thread 1
atomic{

synchronized(n){

tmp = bal;

}

synchronized(n){

bal = tmp + 1;

}

}

begin

acquire(n)

bal = t + 1

release(n)

end

Atomicity = Serializability
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Thread 1
atomic{

synchronized(n){

tmp = bal;

}

synchronized(n){

bal = tmp + 1;

}

}

acquire(n)

t1 = bal

release(n)

Thread 2
synchronized(n){
  bal = 0;
}

acquire(n)

bal = 0

release(n)

Thread 1 Thread 2

acquire(n)

bal = t + 1

release(n)

begin

end
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acquire(n)

t1 = bal

release(n)

acquire(n)

bal = 0

release(n)

Thread 1 Thread 2

acquire(n)

bal = t + 1

release(n)

begin

end

Happens-Before

Enables Relation 
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acquire(n)

t1 = bal

release(n)

acquire(n)

bal = 0

release(n)

Thread 1 Thread 2

acquire(n)

bal = t + 1

release(n)

begin

end

Happens-Before

•program order

Enables Relation 

•program order
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acquire(n)

t1 = bal

release(n)

acquire(n)

bal = 0

release(n)

Thread 1 Thread 2

acquire(n)

bal = t + 1

release(n)

begin

end

fork T0

newV = 0

Thread 0

Happens-Before

•program order

•fork/join order

Enables Relation 

•program order

•fork/join order
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acquire(n)

t1 = bal

release(n)

acquire(n)

bal = 0

release(n)

Thread 1 Thread 2

acquire(n)

bal = t + 1

release(n)

begin

end

Happens-Before

•program order

•fork/join order

•synchronization order

Enables Relation 

•program order

•fork/join order
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acquire(n)

bal = 0

release(n)

Thread 1 Thread 2

acquire(n)

t1 = bal

release(n)

begin

acquire(n)

bal = t + 1

release(n)

end

happens-before
atomicity violation

feasible
atomicity violation Concurrent
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acquire(n)

release(n)

acquire(n)

release(n)

bal = 0

t1 = bal

Thread 1 Thread 2

begin

end

acquire(n)

t1 = bal

release(n)
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...

acquire(n)

release(n)

Thread 2Thread 1

...

acquire(n)

release(n)

begin

end

...

acquire(n)

release(n)
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Thread 1

begin

end

...

acquire(n)

release(n)

...

acquire(n)

release(n)

Thread 2

...

acquire(n)

fork T2

NOT Concurrent 
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• In a trace, a lock operation a is concurrent 
with a later lock operation b if there are 
no intermediate operations which both 
enable b and happen-after a.

a and b not concurrent

a

c

b

happens-before

enables

• program order

• fork/join order

• sync order

• program order

• fork/join order
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Thread 1

begin

end

...

acquire(n)

release(n)

...

acquire(n)

release(n)

Thread 2

...

acquire(n)

NOT Concurrent:
a

c

b

happens-before

enables

fork T2
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c

b

happens-before

enables

a

Thread 1

begin

end

...

acquire(n)

release(n)

...

acquire(n)

release(n)

Thread 2

...

acquire(n)

release(n)

Concurrent

 no C
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Thread 1

begin

end

...

acquire(n)

release(n)

...

acquire(n)

release(n)

In-Error
Thread 2

...

acquire(n)

release(n)

vulnerable 
window

last release was 
by another thread
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Thread 1

begin

end

...

acquire(n)

release(n)

...

acquire(n)

release(n)

Thread 2

After-Error

...

acquire(n)

release(n)

vulnerable 
window

red acquire could 
have occurred in 

vulnerable window

Concurrent
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...

release(n)

Thread 1 Thread 2

Before-Error

begin

...

release(n)

acquire(n)

...

acquire(n)

release(n)

vulnerable 
window

acquire(n)
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...

Thread 1 Thread 2

watched locks 
for thread 1

n

begin

...

release(n)

acquire(n)

...

acquire(n)

release(n)

vulnerable 
window

2nd acquire of 
watched lock

acquire(n)

Concurrent
Before-Error
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atomic b(){

d();

c();

}

atomic c(){

d();

}

atomic d(){

sync(m) {...}

}

Blame Assignment
enter d

acq/rel(m)

exit d

Thread 1 Thread 2

enter d

acq/rel(m)

enter b

begin

b
b:d

acquire(m)

exit d
b

enter cb:c
enter d

b:c:d

vulnerable 
window

Atomic!

Atomic!

Not 
Atomic!

Before-
Error!

Call Stack
Concurrent
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Blame Assignment
atomic b(){

d();

c();

}

atomic c(){

d();

}

atomic d(){

sync(m) {...}

}

enter d

acq/rel(m)

exit d

Thread 1 Thread 2

enter d

acq/rel(m)

enter b

begin

b
b:d

acquire(m)

exit d
b

enter cb:c
enter d

b:c:d

vulnerable 
window

b is not atomic

Before-
Error!

Call Stack
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SideTrack

SideTrack Implementation

RoadRunner
Instrumenter

Java bytecode
plus atomic
annotations

events
Instrumented 
bytecode

      In-Errors

      After-Errors

      Before-ErrorsT1: begin_atomic
T2: acquire(lock3)
T2: read(x,5)
T1: write(y,3)
T1: end_atomic
T2: release(lock3)

Velodrome

FastTrack

JVM

      Velodrome-Errors

      Data Race Errors
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In-Errors
Before-
Errors

After-
Errors

Predicted Errors

elevator 1 3 5 4
colt 7 4 9 2

jbb 5 7 10 5

hedc 4 1 4 0

barrier 1 1 1 0

philo 1 1 1 0

tsp 4 4 4 0

sync 4 4 4 0

27 25 38 11

Errors Found: 
40% improvement with prediction

(Before ∪After)/In(Before ∪After)/In
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Experimental Results: 
Performance
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Experimental Results: 
Performance
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Related Work: 
Predictive Approaches

• Wang & Stoller et al. (2006, 2009)

• analyze traces offline; add static info (HAVE)

• JPredictor (Chen et al. 2008)

• offline causality slicing, violation patterns

• Farzan & Madhusudan (2009)

• time bounds & algorithms, no implementation

• AtomFuzzer (Sen & Park 2008)

• drive scheduler to produce violation, probabilistic 
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Conclusion: SideTrack

• no false alarms

• predicts feasible atomicity violations

• 40% increase in atomicity violations 
detected

• competitive performance

• chain with other tools (Velodrome, FastTrack)
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SideTrack:

• no false alarms

• predicts feasible 
atomicity violations

• 40% increase in atomicity 
violations detected

• competitive performance

• chain with other tools 

• volatiles, wait/notify, 
barriers, etc.

• direct comparison 
with other tools

• more benchmarks

• formal proofs

Future Work
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