
SideTrack:
Generalizing Dynamic

Atomicity Analysis
Caitlin Sadowski

Jaeheon Yi
Cormac Flanagan

University of California, Santa Cruz

2Monday, July 27, 2009

Atomicity

The effect of an atomic code block can be
considered in isolation from the rest of a running
program.

• enables sequential reasoning

• atomicity violations often represent
synchronization errors

• most methods are atomic

3Monday, July 27, 2009

Analyzing for Atomicity

Generalization Precision

• online/dynamic

• generalizes

• no false alarms

4Monday, July 27, 2009

Thread 2
synchronized(m){

 newVar = 0;

}

acquire(n)

t1 = bal

release(n)

acquire(m)

newVar = 0

release(m)

Thread 1 Thread 2
Thread 1
atomic{

synchronized(n){

tmp = bal;

}

synchronized(n){

bal = tmp + 1;

}

}

begin

acquire(n)

bal = t + 1

release(n)

end

Serial Trace: Each atomic block
executes contiguously

5Monday, July 27, 2009

Thread 2
synchronized(m){

 newVar = 0;

}

acquire(n)

t1 = bal

release(n)

acquire(m)

newVar = 0

release(m)

Thread 1 Thread 2
Thread 1
atomic{

synchronized(n){

tmp = bal;

}

synchronized(n){

bal = tmp + 1;

}

}

begin

acquire(n)

bal = t + 1

release(n)

end

Atomicity = Serializability

6Monday, July 27, 2009

Thread 1
atomic{

synchronized(n){

tmp = bal;

}

synchronized(n){

bal = tmp + 1;

}

}

acquire(n)

t1 = bal

release(n)

Thread 2
synchronized(n){
 bal = 0;
}

acquire(n)

bal = 0

release(n)

Thread 1 Thread 2

acquire(n)

bal = t + 1

release(n)

begin

end

7Monday, July 27, 2009

acquire(n)

t1 = bal

release(n)

acquire(n)

bal = 0

release(n)

Thread 1 Thread 2

acquire(n)

bal = t + 1

release(n)

begin

end

Happens-Before

Enables Relation

8Monday, July 27, 2009

acquire(n)

t1 = bal

release(n)

acquire(n)

bal = 0

release(n)

Thread 1 Thread 2

acquire(n)

bal = t + 1

release(n)

begin

end

Happens-Before

•program order

Enables Relation

•program order

9Monday, July 27, 2009

acquire(n)

t1 = bal

release(n)

acquire(n)

bal = 0

release(n)

Thread 1 Thread 2

acquire(n)

bal = t + 1

release(n)

begin

end

fork T0

newV = 0

Thread 0

Happens-Before

•program order

•fork/join order

Enables Relation

•program order

•fork/join order

10Monday, July 27, 2009

acquire(n)

t1 = bal

release(n)

acquire(n)

bal = 0

release(n)

Thread 1 Thread 2

acquire(n)

bal = t + 1

release(n)

begin

end

Happens-Before

•program order

•fork/join order

•synchronization order

Enables Relation

•program order

•fork/join order

11Monday, July 27, 2009

acquire(n)

bal = 0

release(n)

Thread 1 Thread 2

acquire(n)

t1 = bal

release(n)

begin

acquire(n)

bal = t + 1

release(n)

end

happens-before
atomicity violation

feasible
atomicity violation Concurrent

12Monday, July 27, 2009

acquire(n)

release(n)

acquire(n)

release(n)

bal = 0

t1 = bal

Thread 1 Thread 2

begin

end

acquire(n)

t1 = bal

release(n)

13Monday, July 27, 2009

...

acquire(n)

release(n)

Thread 2Thread 1

...

acquire(n)

release(n)

begin

end

...

acquire(n)

release(n)

14Monday, July 27, 2009

Thread 1

begin

end

...

acquire(n)

release(n)

...

acquire(n)

release(n)

Thread 2

...

acquire(n)

fork T2

NOT Concurrent

15Monday, July 27, 2009

• In a trace, a lock operation a is concurrent
with a later lock operation b if there are
no intermediate operations which both
enable b and happen-after a.

a and b not concurrent

a

c

b

happens-before

enables

• program order

• fork/join order

• sync order

• program order

• fork/join order

16Monday, July 27, 2009

Thread 1

begin

end

...

acquire(n)

release(n)

...

acquire(n)

release(n)

Thread 2

...

acquire(n)

NOT Concurrent:
a

c

b

happens-before

enables

fork T2

17Monday, July 27, 2009

c

b

happens-before

enables

a

Thread 1

begin

end

...

acquire(n)

release(n)

...

acquire(n)

release(n)

Thread 2

...

acquire(n)

release(n)

Concurrent

 no C

18Monday, July 27, 2009

Thread 1

begin

end

...

acquire(n)

release(n)

...

acquire(n)

release(n)

In-Error
Thread 2

...

acquire(n)

release(n)

vulnerable
window

last release was
by another thread

19Monday, July 27, 2009

Thread 1

begin

end

...

acquire(n)

release(n)

...

acquire(n)

release(n)

Thread 2

After-Error

...

acquire(n)

release(n)

vulnerable
window

red acquire could
have occurred in

vulnerable window

Concurrent

20Monday, July 27, 2009

...

release(n)

Thread 1 Thread 2

Before-Error

begin

...

release(n)

acquire(n)

...

acquire(n)

release(n)

vulnerable
window

acquire(n)

21Monday, July 27, 2009

...

Thread 1 Thread 2

watched locks
for thread 1

n

begin

...

release(n)

acquire(n)

...

acquire(n)

release(n)

vulnerable
window

2nd acquire of
watched lock

acquire(n)

Concurrent
Before-Error

22Monday, July 27, 2009

atomic b(){

d();

c();

}

atomic c(){

d();

}

atomic d(){

sync(m) {...}

}

Blame Assignment
enter d

acq/rel(m)

exit d

Thread 1 Thread 2

enter d

acq/rel(m)

enter b

begin

b
b:d

acquire(m)

exit d
b

enter cb:c
enter d

b:c:d

vulnerable
window

Atomic!

Atomic!

Not
Atomic!

Before-
Error!

Call Stack
Concurrent

23Monday, July 27, 2009

Blame Assignment
atomic b(){

d();

c();

}

atomic c(){

d();

}

atomic d(){

sync(m) {...}

}

enter d

acq/rel(m)

exit d

Thread 1 Thread 2

enter d

acq/rel(m)

enter b

begin

b
b:d

acquire(m)

exit d
b

enter cb:c
enter d

b:c:d

vulnerable
window

b is not atomic

Before-
Error!

Call Stack

24Monday, July 27, 2009

SideTrack

SideTrack Implementation

RoadRunner
Instrumenter

Java bytecode
plus atomic
annotations

events
Instrumented
bytecode

 In-Errors

 After-Errors

 Before-ErrorsT1: begin_atomic
T2: acquire(lock3)
T2: read(x,5)
T1: write(y,3)
T1: end_atomic
T2: release(lock3)

Velodrome

FastTrack

JVM

 Velodrome-Errors

 Data Race Errors

25Monday, July 27, 2009

In-Errors
Before-
Errors

After-
Errors

Predicted Errors

elevator 1 3 5 4
colt 7 4 9 2

jbb 5 7 10 5

hedc 4 1 4 0

barrier 1 1 1 0

philo 1 1 1 0

tsp 4 4 4 0

sync 4 4 4 0

27 25 38 11

Errors Found:
40% improvement with prediction

(Before ∪After)/In(Before ∪After)/In

26Monday, July 27, 2009

Experimental Results:
Performance

0

3

6

9

12

4.5

3.3

8.1

6.8

1.0S
lo

w
d
o
w

n
 (

x
 B

as
e)

Base Instrumentation
Framework

SideTrack Instrumentation
Framework
w/o forkjoin

SideTrack
w/o forkjoin

27Monday, July 27, 2009

Experimental Results:
Performance

0

3

6

9

12
10.410.3

4.5

3.3

1.0S
lo

w
d
o
w

n
 (

x
 B

as
e)

Base Instrumentation
Framework

SideTrack SingleTrack
(ESOP 2009)

Velodrome
(PLDI 2008)

28Monday, July 27, 2009

Related Work:
Predictive Approaches

• Wang & Stoller et al. (2006, 2009)

• analyze traces offline; add static info (HAVE)

• JPredictor (Chen et al. 2008)

• offline causality slicing, violation patterns

• Farzan & Madhusudan (2009)

• time bounds & algorithms, no implementation

• AtomFuzzer (Sen & Park 2008)

• drive scheduler to produce violation, probabilistic

29Monday, July 27, 2009

Conclusion: SideTrack

• no false alarms

• predicts feasible atomicity violations

• 40% increase in atomicity violations
detected

• competitive performance

• chain with other tools (Velodrome, FastTrack)

30Monday, July 27, 2009

SideTrack:

• no false alarms

• predicts feasible
atomicity violations

• 40% increase in atomicity
violations detected

• competitive performance

• chain with other tools

• volatiles, wait/notify,
barriers, etc.

• direct comparison
with other tools

• more benchmarks

• formal proofs

Future Work

31Monday, July 27, 2009

