
Introduction to Cilk++ Programming

Tutorial at PADTAD

Laboratory Exercises

Pablo Halpern

20 July 2009

1 Choice of Development Environment

To do the exercises in this tutorial, you have a choice of three of development environments:

(a) Windows (with Microsoft Visual Studio) on your own laptop. If you have not already
installed Visual Studio on your machine, we ask that you find a partner that did. Visual
Studio can take a long time to install and patch, and we are very time constrained today.
Please download Cilk++ from http://www.cilk.com/home/download-cilk/.

(b) Linux on your own laptop. Please download Cilk++ from http://www.cilk.com/home/download-
cilk/.

(c) Linux on a PADTAD server via an ssh connection. Cilk++ is already installed. Every-
body is sharing the same user account (Username: padtad, Password: qwer4321. Please
create a subdirectory under the home directory for your own use.

2 Introduction to Cilk++

The Cilk++ platform provides a compiler for the Cilk++ parallel-programming language (a straight-
forward extension to C++), the cilkscreen race detector, and the cilkview scalability analyzer.
In this laboratory, you will install Cilk++ on your Windows or Linux computer (if you haven’t
already done so), compile and run an example program, run cilkscreen on the program to check for
data races, and run cilkview on the program to analyze theoretical and actual multicore speedup.

(a) Many computers, especially laptops, are configured to conserve power by slowing down
the CPU clock during periods of relative inactivity. While this may be a good idea in
general, it interferes with getting accurate timing and speedup measurements. For the
duration of this class, please disable this power-saving feature as follows:

• On (most) Linuxes, type:

Copyright c©2009 Pablo Halpern

1

mkdir /oldcpusettings

cd /sys/devices/system/cpu

for cpu in cpu?; do

> cat $cpu/cpufreq/scaling governor > /oldcpusettings/$cpu

> done

If you wish to restore the previous settings later, type:

cd /oldcpusettings

for cpu in cpu?; do

> cat $cpu > /sys/devices/system/cpu/$cpu/cpufreq/scaling governor

> done

• On Windows XP:

1. Select “Power Options” from the control panel.
2. Select “Home/Office Desk” from the Power schemes drop-down.
3. Click “OK”
4. run “powercfg /q” from a command shell. The “Processor Throttle (AC)”

setting should be “NONE”.
• On Windows Vista:

1. Select “Power Options” from the control panel.
2. Click on the radio button for “High Performance.”
3. Click the “Change plan settings” link.
4. Click the “Change advanced power settings” link.
5. Scroll down to “Processor power management”. Click the “+” to expand the

options.
6. Click the “+”s for “Minimum processor state” and “Maximum processor state”

to verify that the values for “Plugged in” is “100

(b) Shut down any background programs that may consume significant cpu resources such
as email programs and web sites that run Flash or Javascript (e.g., gmail). If any of
these programs chooses to grab some resources while you are running a timing test,
your numbers will be skewed.

(c) In the materials that were distributed to you electronically, you will find a directory
named cilk+1.1.0+, which contains the Cilk++ Programmer’s Guide in PDF format
along with separate installation files for 32-bit Linux, 64-bit Linux and 32-bit Windows.
Read and follow the instructions in the Programmer’s Guide for installing Cilk++ for
your operating system.

(d) Linux only: Use your favorite package manager to install the gnuplot program. gnuplot
is used by the cilkview scalability analyzer.

(e) Windows only: The Cilk++ examples for Windows are packaged in a separate installer
file in the Cilk++ installation directory. Install the examples after you install Cilk++
itself.

(f) In the “Getting Started” section of the manual, follow the instructions to “Build and
Run a Cilk++ Example”. (On the PADTAD machines, you will need to copy the
examples into your own subdirectory.) Note that, if you use Microsoft Visual Studio,
you currently need to open a command window and invoke cilkview from the command

2

line. (cilkview is not yet integrated with the Visual Studio IDE.) NOTE: When running
cilkview, specify the “-trails all” option to generate actual run data in addition to
the predicted speedup data. (If you have n processors, your program will run n + 1
times.)

(g) If you are using a PADTAD machine, unpack exercises.tgz into your private subdi-
rectory. If you have your own laptop, copy exercises.tgz or exercises.zip from the
PADTAD servers using scp:

$ scp padtad@aml.cs.byu.edu:exercises.tgz .

Unpack the exercises archive.

3 Parallelizing Matrix Multiplication

In this laboratory, you will write a multithreaded program in Cilk++ to implement matrix mul-
tiplication. One of the goals of this assignment is for you to get a feeling of how work , span ,
and parallelism affect performance. First, you will parallelize a program that performs matrix
multiplication using three nested loops. Then, you will write a serial program to perform matrix
multiplication by divide-and-conquer and parallelize it by inserting Cilk keywords. If you have
time, you can implement a parallel version of Strassen’s algorithm. Finally, you may optimize your
program however you wish and possibly win a prize!

For those of you who have not looked at matrix multiplication in a little while, the problem is
to compute the matrix product

C = AB ,

where C, A, and B are n × n matrices. Each element cij of the product C can be computed by
multiplying each element aik of row i in A by the corresponding element bkj in column j in B, and
then summing the results, that is,

cij =
n

∑

k=1

aikbkj .

For more information on matrix multiplication, please see http://en.wikipedia.org/wiki/Matrix
multiplication#Ordinary matrix product. A good description of the algorithms used in this lab
can be found in [1].

The nested-loop and divide-and-conquer versions of these programs can be adapted to work
with arbitrary rectangular matrices. To simplify the interface, however, we limit ourselves to n×n
square matrices. Strassen’s algorithm is further limited to n × n square matrices where n is an
exact power of 2.

3.1 Matrix multiplication using loop parallelism

The sources for this exercise can be found in the mm subdirectory of the exercises directory. Use
the Makefile to build for Linux, and mm_loops.sln to start Visual Studio for Windows.

The file mm_loops.cilk contains two copies of a Θ(n3)-work matrix multiplication algorithm
using a triply nested loop. The first copy (mm_loop_serial) is the control for verifying your results
— leave it unchanged. The second copy (mm_loop_parallel) is the one that you will parallelize.

3

This file also contains a test program that verifies the results of your parallel implementation and
also provides infrastructure for timing and measuring parallelism.

(a) Compile mm_loops with optimization, and verify that it operates correctly. Supply the
--verify command-line option to force running all tests. (Microsoft Visual Studio
users should also supply the --pause option.)

(b) Parallelize the mm_loop_parallel function by changing the outermost for loop into a
cilk_for loop. Verify correct results with the --verify option. Run cilkview on your
program to determine theoretical and actual speedup:

• On Linux, type:

$ cilkview ./mm loops

• In Microsoft Visual Studio, select:

Tools|Visual Studio 2005 Command Prompt to open a command shell. Change
directory to your mm directory and type:

mm> cilkview Release\mm loops.exe

Do not use the --verify or --pause options when running cilkview.

(c) Change the outermost cilk_for back into a serial for loop and change the middle for

loop into a cilk_for loop. Repeat the test with the --verify option, and then repeat
the cilkview test. Did any results change? Try making both loops parallel. Which of
the three combinations produces the best results?

(d) (Optional.) What happens if you change the innermost for loop into a cilk_for?

3.2 Matrix multiplication by divide-and-conquer

Divide-and-conquer algorithms often run faster than looping algorithms, because they exploit the
microprocessor cache hierarchy more effectively. This section asks you to write a divide-and-conquer
implementation of matrix multiplication. You will find the source code for the incomplete program
in mm_recursive.cilk. The program contains two implementations of matrix multiplication. The
mm_loop_serial function is the same as in Section 3.1 and is provided for verification and tim-
ing comparisons. The mm_recursive_parallel function is the skeleton of a divide-and-conquer
implementation.

Your recursive implementation will be based on the identity
[

A11 A12

A21 A22

] [

B11 B12

B21 B22

]

=

[

A11 · B11 + A12 · B21 A11 · B12 + A12 · B22

A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

]

,

where A11, A12, etc., are submatrices of A. In other words, matrix multiplication can be performed
by subdividing each matrix into four parts, then treating each part as a single element and (recur-
sively) performing matrix multiplication on these partitioned matrices. (The number of columns
in A11 must match the number of rows in B11, and so forth.) Although the algorithm operates
recursively, its work is still Θ(n3), the same as the straightforward algorithm that employs triply
nested loops.

4

(e) Compile mm_recursive, and verify that it compiles but fails to run successfully when
using the --verify command-line argument. The failure is caused by the fact that
the mm_recursive_parallel has not been fully implemented yet. You may also get
numerous warnings about unused variables. All those warnings will go away when you
write your recursive code.

(f) In the file mm_recursive.cilk, fill in code in the mm_recursive_internal function
to implement the divide-and-conquer algorithm. The error-prone task of subdividing
the matrices into four parts has been done for you. All you need to do is to fill in the
recursive calls (eight in total – one for each of the eight matrix-multiplications in the
algorithm). Compile and run your new mm_recursive program and verify that it runs
successfully.

(g) Make your recursive function parallel by adding cilk_spawn in front of six of the eight
recursive calls. You will first need to reorder the calls into two groups of four, with
a cilk_sync after each group, so that no submatrix of C is updated twice within the
same group of parallel calls. Alternatively, you can create a helper function that calls
mm_recursive_internal twice in series, then change mm_recursive_internal to call
the helper function four times in parallel. Compile and run your new mm_recursive

program. Verify that it is correct and run cilkview. For large matrices, how does the
performance of the recursive algorithm compare with the nested-loops algorithm on a
single processor?

(h) Uncomment the line in the program that reads “#define USE_LOOPS_FOR_SMALL_MATRICES”.
This change causes the algorithm to change from divide-and-conquer recursion to a
triply nested loop for small matrices. How does this change impact performance? How
does the performance of this new version compare to the loop-only version?

3.3 Matrix multiplication by Strassen’s algorithm (optional)

For large matrices, Strassen’s algorithm can outperform the other two methods we’ve seen, because
it entails Θ(nlg 7) = O(n2.81)-work, rather than Θ(n3). Section 3.3.1 describes Strassen’s algorithm
in detail (although it doesn’t provide insight as to how Volker Strassen discovered this bizarre
method). Section 3.3.2 describes the exercise itself.

3.3.1 Description of Strassen’s Algorithm

Strassen’s algorithm can multiply two n× n matrices in Θ(nlg 7) = O(n2.81) work, which is asymp-
totically better than more straightforward methods that require Θ(n3) work. Let A and B be two
n × n matrices. For the rest of the assignment, assume that n is an exact power of 2. Recall that
the product of A and B is defined to be C = AB, where

Cij =
n

∑

k=1

AikBkj .

Although this definition leads to a straightforward Θ(n3)-work algorithm to compute the product,
a remarkable identity can be exploited which leads to a divide-and-conquer algorithm with work

5

Θ(nlg 7) = O(n2.81). Partition C, A, and B as follows:

C =

[

C11 C12

C21 C22

]

, A =

[

A11 A12

A21 A22

]

, B =

[

B11 B12

B21 B22

]

.

Then, we have
[

C11 C12

C21 C22

]

=

[

A11 A12

A21 A22

] [

B11 B12

B21 B22

]

.

Instead of doing the usual divide-and-conquer, perform the following calculations:

M1 = (A11 + A22)(B11 + B22),

M2 = (A21 + A22)B11,

M3 = A11(B12 − B22),

M4 = A22(B21 − B11),

M5 = (A11 + A12)B22,

M6 = (A21 − A11)(B11 + B12),

M7 = (A12 − A22)(B21 + B22).

We can now express C in terms of the M ’s as follows:

C11 = M1 + M4 − M5 + M7,

C12 = M3 + M5,

C21 = M2 + M4,

C22 = M1 − M2 + M3 + M6.

If all intermediate results are appropriately saved, a multiplication of size n can be reduced to 7
multiplications of size n/2, plus 18 matrix additions.

3.3.2 Exercise (matrix-multiplication using Strassen’s algorithm)

(i) Modify your divide-and-conquer solution implement Strassen’s algorithm. Verify its
correctness, run cilkscreen and run cilkview.

To make a practical implementation, you should probably switch to the ordinary serial nested-loop
algorithm for small enough submatrices. For some applications, Strassen’s algorithm produces
lower-quality answers than the standard algorithm does, due to loss of precision from round-off.
You may not actually see round-off error using our test code, since the matrices are initialized with
random integers.

3.4 Maximize Speed (optional)

The last part of the lab is a no-holds-barred effort to speed up your matrix multiplication.

(j) Revise your matrix-multiplication program to enhance its performance.

Here are some ideas, which may or may not work, for speeding up your code:

6

• Use the -S option to cilk++ (Linux) or the /cilkp keep option to cilkpp (Windows), and
look at the assembly language produced by the compiler. (Note: On Windows you should
look at the .ysm rather than the .asm file.) See whether rearranging the source code produces
a faster executable. Remember that memory references are expensive, and register operations
are cheap.

• Exploit the processor’s registers and pipeline by coarsening the base case to use a loop for
sufficiently small matrices. Experiment with different thresholds for coarsening.

• In addition to coarsening the base case to use a loop, open-code small 2 × 2 matrix multipli-
cations within the loop.

• Reorder how subproblems are spawned to get better locality.

• Change the representation of matrices from row-major to some other order. Remember to
change it back before you output the result.

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms. The MIT Press, third edition, 2009.

7

