
PADTAD, London 07/2007 1

Healing Data Races On-The-Fly

Bohuslav Křena, Zdeněk Letko, Tomáš Vojnar
(Brno university of Technology, Czech Republic)

Rachel Tzoref, Shmuel Ur
(IBM, Haifa Research Lab, Israel)

PADTAD, London 07/2007 2

Agenda

● Introduction
● Self-Healing steps:

– Problem detection

– Problem localisation

– Problem healing

– Healing assurance

● Preliminary results and experiments
● Discussion

PADTAD, London 07/2007 3

What is a race?

● A data race occurs when two concurrent
threads access a shared variable and when:
– at least one access is a write and

– the threads use no explicit mechanism to prevent
the accesses from being simultaneous.

● Usually a data race is a serious error caused by
failure to synchronize properly.

● Can cause wrong results, deadlocks,
exceptions...

PADTAD, London 07/2007 4

Atomicity races

● Races caused by violation of wrong
assumptions that some blocks of code will be
executed atomically.

● Example:

Thread 1 Thread 2
void someMethod(){ void someMethod(){

long local = shared; long local = shared;
local = update(local); local = update(local);
shared = local; shared = local;

} }

PADTAD, London 07/2007 5

Atomicity races

● Races caused by violation of wrong
assumptions that some blocks of code will be
executed atomically.

● Example:

Thread 1 Thread 2
void someMethod(){ void someMethod(){

shared=update(shared); shared=update(shared);
} }

PADTAD, London 07/2007 6

Inherent races

● Races not related to atomicity.
● Data race if the following holds:

– Executing any segment of code in each thread
atomically does not determine an order of accesses
to shared variable.

– The different orders in which the shared variable is
acessed can be classified as “good” and “bad”
according to the expected behaviour of the
program.

PADTAD, London 07/2007 7

Inherent races

● Example:

Thread 1 Thread2
void synchronized void synchronized

someMethod(){ otherMethod(){
long local = shared; shared = null;
local = update(local); }
shared = local;

}

PADTAD, London 07/2007 8

Agenda

● Introduction
● Self-Healing steps:

– Problem detection

– Problem localisation

– Problem healing

– Healing assurance

● Preliminary results and experiments
● Discussion

PADTAD, London 07/2007 9

 Problem detection

● Eraser algorithm
– Detects so called apparent data races

● Principle:
– For each variable maintains its state and the set of

candidate locks

– Race is detected whenever:
● the variable is in state Shared and
● the set of candidates locks becomes empty

PADTAD, London 07/2007 10

Demonstration of the
detection

static class Flight {
private int soldSeats;
...
Flight(){

soldSeats = 0;
...

}
...
boolean bookTicket(){

soldSeats++;
}
...

}

Thread_main
new Flight();
(state = Exclusive, C(v)={})

Thread 1
synchronized(lock){
bookTicket();}
(state = Shared, C(v)={lock})

Thread 2
bookTicket();
(state = Race, C(v)={})

Time

PADTAD, London 07/2007 11

Agenda

● Introduction
● Self-Healing steps:

– Problem detection

– Problem localisation

– Problem healing

– Healing assurance

● Preliminary results and experiments
● Discussion

PADTAD, London 07/2007 12

Problem localisation

● Often hard task even for humans.
● Oracle based on looking for pre-specified data

race bug patterns in the code with the aid of
information collected by race detector.

● Use formal methods to reduce the number of
false alarms but with reasonable overhead.

PADTAD, London 07/2007 13

Atomicity Violation
Bug Patterns

● Load-store bug pattern
x++;

● Test-and-use bug pattern
if (p != null)

p = p.next;

● Repeated test-and-use pattern
while (p != null)

p = p.next;

2: getfield #2
5: iconst_1
6: iadd
7: putfield #2

0: aload_0
1: getfield #2
4: ifnull 18
7: aload_0
8: aload_0
9: getfield #2
12:getfield #3
15:putfield #2
18:...

PADTAD, London 07/2007 14

Demonstration of the
localisation

static class Flight {
private int soldSeats;
...
Flight(){

soldSeats = 0;
...

}
...
boolean bookTicket(){

soldSeats++;
}
...

}

getfield #2
iconst_1
iadd
putfield #2

PADTAD, London 07/2007 15

Agenda

● Introduction
● Self-Healing steps:

– Problem detection

– Problem localisation

– Problem healing

– Healing assurance

● Preliminary results and experiments
● Discussion

PADTAD, London 07/2007 16

Healing atomicity races

● Influencing the scheduler
– Forcing a context switch

Thread.yield();

● Idea:

– To receive full time window from the scheduler.

● Pros

– Safe and legal solution.

● Cons

– Only decrease the probability of race manifestation.

PADTAD, London 07/2007 17

Healing atomicity races

● Influencing scheduler
– Temporary changes of the priorities

Thread.setPriority(MAXPRIORITY);
...
Thread.setPriority(originalPriority);

● Idea:

– To receive full time window from the scheduler.

● Pros

– Safe and legal solution.

● Cons

– Only decrease the probability of race manifestation.

– Strongly JVM and OS dependent.

PADTAD, London 07/2007 18

Healing atomicity races

● Adding synchronization actions
– Suitable use of mutexes

healingMutex.lock();
...
healingMutex.unlock();

● Idea:

– To prevent accesses being simultaneous.

● Pros

– Heal the race.

● Cons

– Could introduce deadlock.

– Exceptions must be covered.

PADTAD, London 07/2007 19

Healing inherent races

● Distinguish between good and bad orders
● Enforce good order

– Change the scheduling of the program.

● Override bad order
– Concentrate on multiple write accesses.

– Doesn't prevent bad order from occurring.

PADTAD, London 07/2007 20

Demonstration of the healing

static class Flight {
private int soldSeats;
...
Flight(){

soldSeats = 0;
...

}
...
boolean bookTicket(){

soldSeats++;
}
...

}

Healing by influencing scheduler:
boolean bookTicket(){

Thread.yield();
soldSeats++;

}

Healing by synchronization:
boolean bookTicket(){

raceLock.lock();
soldSeats++;
raceLock.unlock();

}

PADTAD, London 07/2007 21

Agenda

● Introduction
● Self-Healing steps:

– Problem detection

– Problem localisation

– Problem healing

– Healing assurance

● Preliminary results and experiments
● Discussion

PADTAD, London 07/2007 22

Healing assurance

● Static analysis and/or bounded model checking
– Reduce false alarms during detection and

localisation.

– Ensure that a new bug cannot be introduced.

– Help to choose suitable healing method.

● ... future work

PADTAD, London 07/2007 23

Agenda

● Introduction
● Self-Healing steps:

– Problem detection

– Problem localisation

– Problem healing

– Healing assurance

● Preliminary results and experiments
● Discussion

PADTAD, London 07/2007 24

Preliminary results

● Implemented race detector is able:
– To detect wrong locking policy using Eraser

algorithm.

– To detect load-store atomicity bug pattern.

– To localise the bug and give enough information to
the developer.

– To heal founded bug by influencing scheduler and
also by introducing additional synchronization.

● Architecture available also as an Eclipse plug-in.

PADTAD, London 07/2007 25

Experiments

PADTAD, London 07/2007 26

Thank you

PADTAD, London 07/2007 27

Eraser algorithm
Candidate_locks(x) := Candidate_locks(x) ∩ Locks_held(x);
if Candidate_locks(x) = { }, then issue a warning

Candidate_locks = set of locks used to protect variable
Locks_held = set of locks owned by thread

PADTAD, London 07/2007 28

Architecture overview

Original bytecode

...
load x
...

Instrumented bytecode
...
BeforeVarRead
load x
AfterVarRead
...

