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[l What is a race?

A data race occurs when two concurrent
threads access a shared variable and when:

— at least one access is a write and

- the threads use no explicit mechanism to prevent
the accesses from being simultaneous.

 Usually a data race is a serious error caused by
failure to synchronize properly.

« Can cause wrong results, deadlocks,
exceptions...
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[l Atomicity races

» Races caused by violation of wrong
assumptions that some blocks of code will be

executed atomically.

 Example:
Thread 1 Thread 2
volid someMethod () { vold someMethod () {
long local = shared; long local = shared;
local = update(local); local = update(local);
shared = local; shared = local;
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[l Atomicity races

» Races caused by violation of wrong
assumptions that some blocks of code will be

executed atomically.

« Example:
Thread 1 Thread 2
vold someMethod () { vold someMethod () {
shared=update (shared) ; shared=update (shared) ;

} }
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- Inherent races

 Races not related to atomicity.
» Data race if the following holds:

- Executing any segment of code in each thread
atomically does not determine an order of accesses
to shared variable.

- The different orders in which the shared variable is
acessed can be classified as “good” and “bad”
according to the expected behaviour of the
program.
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- Inherent races

 Example:
Thread 1 Thread2
volid synchronized volid synchronized
someMethod () { otherMethod () {
long local = shared; shared = null;
local = update(local); }
shared = local;
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lllIS Problem detection

e Eraser algorithm
- Detects so called apparent data races
* Principle:

- For each variable maintains its state and the set of
candidate locks

- Race Is detected whenever:

* the variable is in state Shared and
* the set of candidates locks becomes empty
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Demonstration of the
detection

static class Flight {
private int soldSeats;
Flight () {
soldSeats = 0;

}

boolean bookTicket () {
soldSeats++;

}

PADTAD, London 07/2007

Thread_main
new Flight ()

(state = Exclusive, C(v)={})
Thread 1

synchronized (lock) {
bookTicket () ;}

(state = Shared, C(v)={lock})

Thread 2
bookTicket () ;

(state = Race, C(v)={})
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llIIS Problem localisation

 Often hard task even for humans.

* Oracle based on looking for pre-specified data
race bug patterns in the code with the aid of
information collected by race detector.

e Use formal methods to reduce the number of
false alarms but with reasonable overhead.
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N\ Atomicity Violation
LIS Bug Patterns

» | oad-store bug pattern

2: getfield #2
X++; » 5: iconst 1

6: 1add

7: putfield #2

* Test-and-use bug pattern

if (p ‘= null) m—
P = p.next;

: aload 0

: getfield #2
: 1fnull 18

: aload O

: aload 0

9. getfleld #2

° _ _ 12:getfield #3
Repeated test-and-use pattern [ Z:°° 10 0

while (p != null) 18:...
P = p.next;
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EZA\) Demonstration of the
lilI§ localisation

static class Flight {
private int soldSeats;

Flight () {
soldSeats = 0;

}

boolean bookTicket () { getfield #2

soldSeats++; -  1const 1

putfield #2

BEE

NS PADTAD, London 07/2007 14 Tnformation Socity

Technologics




EZ

Agenda

Introduction
Self-Healing steps:

- Problem detection
- Problem localisation

- Problem healing
- Healing assurance

Preliminary results and experiments
Discussion

PADTAD, London 07/2007

15

SE]

Information Society
Technologics



(7
S
[[1mn]|
|

1l

I

Healing atomicity races

 Influencing the scheduler

- Forcing a context switch
Thread.yield();

 |dea:

— To receive full time window from the scheduler.

e Pros

- Safe and legal solution.
« Cons

- Only decrease the probability of race manifestation.
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Healing atomicity races

* Influencing scheduler

- Temporary changes of the priorities

* |dea:

Thread.setPriority (MAXPRIORITY) ;

Thread.setPriority(originalPriority);

— To receive full time window from the scheduler.

e Pros

- Safe and legal solution.

e Cons

- Only decrease the probability of race manifestation.
- Strongly JVM and OS dependent.
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Healing atomicity races

* Adding synchronization actions

— Suitable use of mutexes

* |dea:

healingMutex.lock () ;

healingMutex.unlock () ;

- To prevent accesses being simultaneous.

e Pros

- Heal the race.

e Cons

— Could introduce deadlock.

- Exceptions must be covered.
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[l Healing inherent races

* Distinguish between good and bad orders
* Enforce good order

- Change the scheduling of the program.
* Override bad order

— Concentrate on multiple write accesses.
- Doesn't prevent bad order from occurring.
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Demonstration of the healing

&
static class Flight ({ Healing by influencing scheduler:
private int soldSeats; boolean bookTicket () {
- .. Thread.yield() ;
Flight () { soldSeats++;
soldSeats = 0; }

}
Healing by synchronization:

boolean bookTicket () { boolean bookTicket () {
soldSeats++; raceLock.lock();
} soldSeats++;

racelLock.unlock () ;
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llIIS Healing assurance

» Static analysis and/or bounded model checking

- Reduce false alarms during detection and
localisation.

- Ensure that a new bug cannot be introduced.
- Help to choose suitable healing method.

e ... future work
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lllIS Preliminary results

* Implemented race detector is able:

- To detect wrong locking policy using Eraser
algorithm.

- To detect load-store atomicity bug pattern.

- To localise the bug and give enough information to
the developer.

- To heal founded bug by influencing scheduler and
also by introducing additional synchronization.

* Architecture available also as an Eclipse plug-in.
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Experiments

Race manifestation in #

Healing efficiency — 4 processors

1488

1
= 3 5
Hunmber of threads in conflict

Hithout race detector —— Healing by priority

Hith race detector
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Eraser algorithm

Candidate locks(x) := Candidate locks(x) M Locks held(x);

If Candidate _locks(x) = { }, then issue a warning

Candidate locks = set of locks used to protect variable
Locks_held = set of locks owned by thread

o First thread wr First thread wr/rd

Other thread wr Cther thread rd

Any thread rd/wr
with proper lock Any thread rd

any thread wr
without proper lock

[
Ary thread rdfwr .
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5 Architecture overview

Instrumented
Java bytecode

Race detector

Call of ConTest Registred Java listeners

Original bytecode Instrumented bytecode

é.efore VarRead
load x » |oad x
AfterVarRead
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