Healing Data Races On-The-Fly

Bohuslav Krena, Zdenek Letko, Tomas Vojnar
(Brno university of Technology, Czech Republic)

Rachel Tzoref, Shmuel Ur
(IBM, Haifa Research Lab, Israel)

/ BEE

Tz, ~ -
AU PADTAD, London 07/2007 1 s e

Technologics

EZ

Agenda

ol BEE

Introduction
Self-Healing steps:

- Problem detection
- Problem localisation

- Problem healing
- Healing assurance

Preliminary results and experiments
Discussion

YIS PADTAD, London 07/2007 2 e

|\\|\
(7
\&
[[1n]]
i
P"
)

[l What is a race?

A data race occurs when two concurrent
threads access a shared variable and when:

— at least one access is a write and

- the threads use no explicit mechanism to prevent
the accesses from being simultaneous.

 Usually a data race is a serious error caused by
failure to synchronize properly.

« Can cause wrong results, deadlocks,
exceptions...

BEE

B —
SHANS PADTAD, London 07/2007 3 oo oY

Technologics

[l Atomicity races

» Races caused by violation of wrong
assumptions that some blocks of code will be

executed atomically.

 Example:
Thread 1 Thread 2
volid someMethod () { vold someMethod () {
long local = shared; long local = shared;
local = update(local); local = update(local);
shared = local; shared = local;

BEE

Vs e Vi~
AU PADTAD, London 07/2007 4 s e

[l Atomicity races

» Races caused by violation of wrong
assumptions that some blocks of code will be

executed atomically.

« Example:
Thread 1 Thread 2
vold someMethod () { vold someMethod () {
shared=update (shared) ; shared=update (shared) ;

} }

BEE

Vs e Vi~
AU PADTAD, London 07/2007 5 o e &Y

_//J N

7
S
[[1n]]
i
P"

I

- Inherent races

 Races not related to atomicity.
» Data race if the following holds:

- Executing any segment of code in each thread
atomically does not determine an order of accesses
to shared variable.

- The different orders in which the shared variable is
acessed can be classified as “good” and “bad”
according to the expected behaviour of the
program.

, BHE

o = . -
WA PADTAD, London 07/2007 6 O e

lechnologies

(7
S
[[1n]]

I
|I||
I

- Inherent races

 Example:
Thread 1 Thread2
volid synchronized volid synchronized
someMethod () { otherMethod () {
long local = shared; shared = null;
local = update(local); }
shared = local;

, BIE

7z PADTAD, London 07/2007 7 I Sodety

EZ

Agenda

ol BEE

Introduction
Self-Healing steps:

— Problem detection
- Problem localisation

- Problem healing
- Healing assurance

Preliminary results and experiments
Discussion

YIS PADTAD, London 07/2007 I A

)\ _
lllIS Problem detection

e Eraser algorithm
- Detects so called apparent data races
* Principle:

- For each variable maintains its state and the set of
candidate locks

- Race Is detected whenever:

* the variable is in state Shared and
* the set of candidates locks becomes empty

|

y B

g, z -
AU PADTAD, London 07/2007 9 oo Y

Technologics

Demonstration of the
detection

static class Flight {
private int soldSeats;
Flight () {
soldSeats = 0;

}

boolean bookTicket () {
soldSeats++;

}

PADTAD, London 07/2007

Thread_main
new Flight ()

(state = Exclusive, C(v)={})
Thread 1

synchronized (lock) {
bookTicket () ;}

(state = Shared, C(v)={lock})

Thread 2
bookTicket () ;

(state = Race, C(v)={})

Time

B

iety

Information Soc
10 Technologies

EZ

Agenda

Introduction
Self-Healing steps:

- Problem detection
- Problem localisation

- Problem healing
- Healing assurance

Preliminary results and experiments
Discussion

PADTAD, London 07/2007

11

SE]

Information Society
Technologics

llIIS Problem localisation

 Often hard task even for humans.

* Oracle based on looking for pre-specified data
race bug patterns in the code with the aid of
information collected by race detector.

e Use formal methods to reduce the number of
false alarms but with reasonable overhead.

s, £ —
NS PADTAD, London 07/2007 12 Mron s e

N\ Atomicity Violation
LIS Bug Patterns

» | oad-store bug pattern

2: getfield #2
X++; » 5: iconst 1

6: 1add

7: putfield #2

* Test-and-use bug pattern

if (p ‘= null) m—
P = p.next;

: aload 0

: getfield #2
: 1fnull 18

: aload O

: aload 0

9. getfleld #2

° _ _ 12:getfield #3
Repeated test-and-use pattern [Z:°° 10 0

while (p != null) 18:...
P = p.next;

o J s - O

B

ol oy
ANV PADTAD, London 07/2007 IR ey

EZA\) Demonstration of the
lilI§ localisation

static class Flight {
private int soldSeats;

Flight () {
soldSeats = 0;

}

boolean bookTicket () { getfield #2

soldSeats++; - 1const 1

putfield #2

BEE

NS PADTAD, London 07/2007 14 Tnformation Socity

Technologics

EZ

Agenda

Introduction
Self-Healing steps:

- Problem detection
- Problem localisation

- Problem healing
- Healing assurance

Preliminary results and experiments
Discussion

PADTAD, London 07/2007

15

SE]

Information Society
Technologics

(7
S
[[1mn]|
|

1l

I

Healing atomicity races

 Influencing the scheduler

- Forcing a context switch
Thread.yield();

 |dea:

— To receive full time window from the scheduler.

e Pros

- Safe and legal solution.
« Cons

- Only decrease the probability of race manifestation.

, BHE

&z = .
ZZZzZ PADTAD, London 07/2007 16 MOEINA

E/\Z

Healing atomicity races

* Influencing scheduler

- Temporary changes of the priorities

* |dea:

Thread.setPriority (MAXPRIORITY) ;

Thread.setPriority(originalPriority);

— To receive full time window from the scheduler.

e Pros

- Safe and legal solution.

e Cons

- Only decrease the probability of race manifestation.
- Strongly JVM and OS dependent.

SIS

PADTAD, London 07/2007

17

B

iety

Information Soc
Technologics

E/\Z

Healing atomicity races

* Adding synchronization actions

— Suitable use of mutexes

* |dea:

healingMutex.lock () ;

healingMutex.unlock () ;

- To prevent accesses being simultaneous.

e Pros

- Heal the race.

e Cons

— Could introduce deadlock.

- Exceptions must be covered.

SIS

PADTAD, London 07/2007

18

B

iety

Information Soc
Technologics

|
11
]

[l Healing inherent races

* Distinguish between good and bad orders
* Enforce good order

- Change the scheduling of the program.
* Override bad order

— Concentrate on multiple write accesses.
- Doesn't prevent bad order from occurring.

.‘/E 1’- el a - =
NS PADTAD, London 07/2007 19 Mo ey

Demonstration of the healing

&
static class Flight ({ Healing by influencing scheduler:
private int soldSeats; boolean bookTicket () {
- .. Thread.yield() ;
Flight () { soldSeats++;
soldSeats = 0; }

}
Healing by synchronization:

boolean bookTicket () { boolean bookTicket () {
soldSeats++; raceLock.lock();
} soldSeats++;

racelLock.unlock () ;

B

o o) e
ez PADTAD, London 07/2007 20 nforpmaton Society

EZ

Agenda

Introduction
Self-Healing steps:

- Problem detection
- Problem localisation

- Problem healing
- Healing assurance

Preliminary results and experiments
Discussion

PADTAD, London 07/2007

21

SE]

Information Society
Technologics

&
(7
\&
[[1n]]
i
P"
)

llIIS Healing assurance

» Static analysis and/or bounded model checking

- Reduce false alarms during detection and
localisation.

- Ensure that a new bug cannot be introduced.
- Help to choose suitable healing method.

e ... future work

.‘E I’- Cnd a =) s
NS PADTAD, London 07/2007 22 oy e

EZ

Agenda

» B

Introduction
Self-Healing steps:

- Problem detection
- Problem localisation

- Problem healing
- Healing assurance

Preliminary results and experiments
Discussion

NS PADTAD, London 07/2007 23 Information Society

lllIS Preliminary results

* Implemented race detector is able:

- To detect wrong locking policy using Eraser
algorithm.

- To detect load-store atomicity bug pattern.

- To localise the bug and give enough information to
the developer.

- To heal founded bug by influencing scheduler and
also by introducing additional synchronization.

* Architecture available also as an Eclipse plug-in.

B

i 2 -
AU PADTAD, London 07/2007 24 oo

lechnologies

Experiments

Race manifestation in #

Healing efficiency — 4 processors

1488

1
= 3 5
Hunmber of threads in conflict

Hithout race detector —— Healing by priority

Hith race detector

BEE

/ # a =) s
7z PADTAD, London 07/2007 25 e e

.;IIII

Thank you

PADTAD, London 07/2007

BN

26 nforpiton Society

Eraser algorithm

Candidate locks(x) := Candidate locks(x) M Locks held(x);

If Candidate _locks(x) = { }, then issue a warning

Candidate locks = set of locks used to protect variable
Locks_held = set of locks owned by thread

o First thread wr First thread wr/rd

Other thread wr Cther thread rd

Any thread rd/wr
with proper lock Any thread rd

any thread wr
without proper lock

[
Ary thread rdfwr .

Information Society
27 Technologies

5 Architecture overview

Instrumented
Java bytecode

Race detector

Call of ConTest Registred Java listeners

Original bytecode Instrumented bytecode

é.efore VarRead
load x » |oad x
AfterVarRead

, BHE

7% PADTAD, London 07/2007 28 Tnforpation Society

