
1

Testing Patterns for
Software Transactional Memory

Engines

Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

João Lourenço

Joao.Lourenco@di.fct.unl.pt

Gonçalo Cunha

Goncalo.Cunha@gmail.com

2

Motivation Motivation [1][1]

• Limits of Moore’s law
– Clock speed

stopped increasing
(3 GHz for the last
5 years)

• Future (present) PC’s
are multi-core
[Borkar, Dubey, Kahn, et al.
“Platform 2015.” Intel White
Paper, 2005]

– Parallelism is the
“way to go” Sutter. “A Fundamental Turn Toward Concurrency.” Dr. Dobb’s Journal, 2005.

3

Motivation Motivation [2][2]

• Concurrent programming is difficult
– Deal with many issues
– e.g., concurrency control

• Locks “lead the market”
– Coarse-grained: lock the whole big routine (e.g.,

java “synchronized”)
• Easier to use but limits concurrency

– Fine-grained: lock only the needed item
• Allows more concurrency but error-prone

4

Motivation Motivation [3][3]

• Problems with locking
– Races: forgotten locks
– Priority inversion: low-priority job holds a lock waited by a

higher-priority one
– Deadlocks: locks acquired in “inconsistent order”, no

progress at all
– Livelocks: permanent “do/undo”, no effective progress
– Convoying: lock-older descheduled, no others may

proceed
– Starvation: a process never runs
– Tricky error handling: need to restore invariants and

release locks in exception handler
– Simplicity vs. scalability tension
– But the worst of all is… locks do not compose!

5

Motivation Motivation [4][4]

• Is composition that important?
– Composition helps dealing with complexity (scalability)

• Build large programs from small working pieces

• Example:
– A.withdraw(m) / A.deposit(m)

• Withdraw / deposit money from / to account A
• Use lock to block access to account within the methods

– A.transfer(B,5)
• A.withdraw(5); B.deposit(5)
• There is a period where the money is not in A neither B

– Remove lock / unlock from primitives and expose locking
– lock(A); lock(B); A.withdraw(3); B.deposit(3); unlock(A); unlock(B)

6

Motivation Motivation [5][5]

• The alternative…
(Software) Transactional Memory – STM

• Inspired in DB folk
– ACID properties

Atomicity, Consistency,
Isolation, Durability

• Drop CD and keep AI

• Ensure speed, more speed and… oh yes!
Speed!

atomic {atomic {

A.withdraw(3)A.withdraw(3)
B.deposit(3)B.deposit(3)

}}Not in scope of this
talk

7

AgendaAgenda

• Motivation

• STM Design and Implementation Issues

• Testing an STM implementation

• Conclusions

8

STM Design & Implementation IssuesSTM Design & Implementation Issues

• Synchronization
– May use blocking or non-blocking techniques

• Recovery strategy
– Undo-log (in-place) / Redo-log (out-of-place)

• Transactional granularity
– Object-level / block-level (word or cache-line size)

• Lock placement
– Adjacent to data / separate lock table

9

Testing an STM ImplementationTesting an STM Implementation

• Synchronization
– May use blocking or non-blocking techniques

• Recovery strategy
– Undo-log / Redo-log

• Transactional granularity
– Object-level / block-level (word or cache-line size)

• Lock placement
– Adjacent to data / separate lock table

Based in TL2Based in TL2
from Dice,from Dice,

ShalevShalev and and ShavitShavit

10

Terminology Terminology –– Transactional levelTransactional level

Transactional operation to store the
value “a” in variable “x”

TxStore(x,a)

Prevents running transactions to do
any further read / write to the variable
“x”

TxSterilize(x)

Transactional operation to read the
value of variable “x”

TxLoad(x)
Abort a transactionTxAbort()
Commit a transactionTxCommit()
Start a transactionTxStart()

MeaningSymbol

11

Terminology Terminology –– Lock & Data levelLock & Data level

Store “v” as the lock version of
transactional variable “x”

SL(x,v)

Release the lock of transactional variable Rel(x)

Acquire the lock of transactional variable
“x”

Acq(x)

Write the value “a” to transactional variable
“x”

WV(x,a)

Read the lock version of transactional
variable “x”

v = RL(x)

Read the value of transactional variable “x”a = RV(x)

MeaningSymbol

12

Simplified decomposition of TL to LDLSimplified decomposition of TL to LDL

WV(x,old); Rel(x)TxAbort(x,v)
SL(x,clock)

Acq(x); RL(y);
WV(x,a); Rel(x);

v1 = RL(y); a =
RV(y);

v2 = RL(y);

ts = clock;
Redo-log STM

SL(x,clock)TxSterilize(x)

RL(y); Rel(x)TxCommit(x)
Acq(x); WV(x,a)TxStore(x,a)

v1 = RL(y); a = RV(y);
v2 = RL(y)

TxLoad(y)
ts = clock;TxStart()

Undo-log STMSymbol

Some internalSome internal
operations wereoperations were

omittedomitted

13

Sample of Bugs Found Sample of Bugs Found [1][1]

Reference to non-transactional memory
(undo/redo-log mode)

y=TxLoad(x.n)
z=TxLoad(y.n)
TxStore(x.n,z)
TxCommit()
TxSterilize(y)
free(y)

T2

Access to free’d memory in “y”a=TxLoad(y.v)

Remove node “y” from linked
list

Get the pointer to node “y”y=TxLoad(x.n)
DescriptionT1

Original
implementation only
limited new writes
(allowing reads)

14

Sample of Bugs Found Sample of Bugs Found [2][2]

TxStore(x,a)
TxCommit()

T2

“y” is write-only
“x” is read-write

Lock acquisition
Read-set validation phase

TxStore(y,a)
TxStore(x,a)
TxCommit()

-Acq(y)
-Acq(x)
-RL(x)

Remove node “y” from linked
list

Get the pointer to node “y”TxLoad(x)
DescriptionT1

Lost update with a small lock table
(redo-log mode)

[…]
for each v in write-set {
if (v is not locked) {
if (v is also in the read-set)
// read/write variable
if (get_lock_version (v) >

tx_timestamp)
abort (); // variable has been

changed
else
lock (v);

else
// write-only variable
lock (v);

}
}

“y” is hashed into
the same

position in lock
table as “x”

15

Sample of Bugs Found Sample of Bugs Found [3][3]

Dirty-read not invalidated when transaction aborts
(undo-log mode)

T1 reads a dirty value- RV(x)

T2 aborts and restores
previous (old) “x” value

TxAbort()
- WV(x,old);

Rel(x)

TxStore(x,a)
- Acq(x);

WV(x,a)

T2

Lock version revalidation OK- RL(x)

TxCommit()

T2 writes a new value into
“x”

T1 is loading variable “x”TxLoad(x)
- RL(x)

DescriptionT1

T2 did not commit
The lock for “x” was

not incremented

16

Sample of Bugs Found Sample of Bugs Found [4][4]

Lost update on lock upgrade
(undo-log mode)

TxStore(x, a)
TxCommit()

T2

Upgrade from read-only
to
read-write access

TxStore(x,
v+1)

v=TxLoad(x)

DescriptionT1

Acquired lock for “x”
No validation of

previous reads was
done

17

Harmful interleavingsHarmful interleavings

• Improperly read and/or modify a shared

variable

• Only occur while the transactional space has

been changed by a transaction

– During read, write/update, commit, abort, and

adding or removing variables to/from the

transitional space

• Frequently are uncommon, allowing test

programs to run for days without occurring

18

Testing patterns Testing patterns [1][1]

• Aim at identifying patterns that increment the
probability of generating harmful interleavings

• Target concurrency control errors, but also
specific implementation options (such as bug
[2: lost update with small lock table])

• Maximize fn= Si Ci / Ti

– Ci à time transaction runs with shared state
changed

– Ti à transaction total runtime

19

Testing patterns Testing patterns [2][2]

• Very short transactions with Read & Write
operations
– Aims at maximizing interleavings between the

main transactional operations (read, write, commit,
abort)

– Also aims at maximizing the frequency of commits
– Adequate to redo-log based STMs

• Only change the shared state at commit time

– Useful for bug [1: reference to non-transactional
memory]

20

Testing patterns Testing patterns [3][3]

• High frequency of variables entering and
leaving the transactional space
– Aims at stressing the variability of the transactional

space
– Targets bugs related to transactions holding

pointers to variables being simultaneously
released by other transactions

– Useful for bug [1: reference to non-transactional
memory]

21

Testing patterns Testing patterns [4][4]

• High number of updates on a small number of
variables
– Aims at generating a very high frequency of

collisions between transactional read and write
(frequent aborts)

– Adequate to undo-log based STMs
• Change the shared state on writes (data and locks),

commit (only locks) and aborts (data and locks)

– Useful for bugs [2: lost update with a small lock
table] and [3: dirty-read not invalidated when
transaction aborts]s

– Overall was one of the most effective

22

Testing patterns Testing patterns [5][5]

• Small lock table
– Lock table stores object/data locks

– Hash function map objects/data to its lock (within
table)

– Hash function may map several objects to same
table position (lock collision)

– Lock collisions may cause improper validation of
the lock state

– Useful for bug [4: lost update on lock upgrade]

23

Testing patterns Testing patterns [6][6]

• More concurrent transactions than CPUs
– If number of transactions < number of CPUs, any

transaction willing to run will be scheduled
immediately

– Transactions will never be stalled waiting for CPU
– Some interleavings depend on transactions being

preempted and stalled for some time
– Useful for bugs [3: dirty-read not invalidated when

transaction aborts]
• This bug depends on transaction T1 being preempted

while execution a TxLoad() operation

24

Conclusions Conclusions [1][1]

• Our experiments focused mainly on a TL2 variant

– Testing cross-referencing with LibLTX (Ennals)

• Identifying testing patterns

– A testing pattern may be instantiated by different test

routines

• The identified patterns, proved to be very effective on

testing two completely different STM

implementations

• Reasoning in terms of testing patterns (behavior)

25

Conclusions Conclusions [2][2]

• Fine tuning of testing patterns may lead to quite
different results

• Experiments suggest that…
– Execution environment has strong implications on STM

engine stability
• Tests executed in multi-core computers may behave differently

when execution in multiprocessors
• Multi-core share cache, multiprocessors don’t à high frequency of

out-of-order executions

– Some errors are directly or indirectly related to out-of-order
processor instruction execution hazard

• Tests that could run for hours or days may fail in seconds

26

Future work Future work [1][1]

• Identify other harmful interleavings (we already
have some more…) and synthesize testing
routines (and patterns) that trigger those
interleavings

• Develop a visualization/display interface
relating transactional events at…
– Application perspective (transactional level)
– STM engine (lock- & data-level)
– Processor perspective (machine code instructions)

27

Future work Future work [2][2]

• Augmenting state space coverage

– e.g, “noise” generators

– Higher probability of generating harmful

interleavings

• Debugging STM based computations

– Debugging within the context of a memory

transaction

• Visualizing STM based computations

– Integrating with debugging

28

The end…The end…

Thank you!

Questions?

