
1

Semantics Driven Dynamic Partial-order
Reduction of MPI-based Parallel Programs

Robert Palmer
Intel Validation Research Labs, Hillsboro, OR

(work done at the Univ of Utah as PhD student)

Ganesh Gopalakrishnan
Robert M. Kirby

School of Computing
University of Utah

Supported by:
Microsoft HPC Institutes

NSF CNS 0509379

2

MPI is the de-facto standard for programming
cluster machines

Our focus: Eliminate Concurrency Bugs from HPC Programs !

An Inconvenient Truth: Bugs ���� More CO2 , Bad Numbers !

(BlueGene/L - Image courtesy of IBM / LLNL) (Image courtesy of Steve Parker, CSAFE, Utah)

����

3

So many ways to eliminate MPI bugs …

� Inspection
– Difficult to carry out on MPI programs (low level notation)

� Simulation Based
– Run given program with manually selected inputs
– Can give poor coverage in practice

� Simulation with runtime heuristics to find bugs
– Marmot: Timeout based deadlocks, random executions
– Intel Trace Collector: Similar checks with data checking
– TotalView: Better trace viewing – still no “model checking”(?)
– We don’t know if any formal coverage metrics are offered

� Model Checking Based
– Being widely used in practice
– Can provide superior debugging for reactive bugs
– Has made considerable strides in abstraction (data, control)

4

“Ad-hoc Testing” “Model Checking”

Our Core Technique: Model Checking

Why model checking works in practice:
* It applies Exhaustive Analysis, as opposed to Incomplete Analysis
* It relies on Abstraction (both manual, and automated)

Exhaustive analysis
of a suitably

abstracted system

Incomplete analysis
of an unabstracted system

Exhaustive analysis of suitably abstracted systems helps catch
more bugs than incomplete analysis of unabstracted systems
[Rushby, SRI International]

5

Model Checking Approaches for MPI
� MC Based On “Golden” Semantics of MPI

Limited Subsets of MPI / C Translated to TLA+ (FMICS 2007)
Limited C Front-End with Slicing using Microsoft Phoenix

� Hand Modeling / Automated Verif. in Executable Lower
Level Formal Notations
Modeling / Verif in Promela (Siegel, Avrunin, et.al. – several papers)
Non-Blocking MPI Operations in Promela + C (Siegel)
Limited Modeling in LOTOS (Pierre et.al. – in the 90’s)

� Modeling in MPI / C – Automatic Model Extraction
Limited Conversion to Zing (Palmer et.al. – SoftMC 05)
Limited Conversion to MPIC-IR (Palmer et.al. – FMICS 07)

� Direct Model Checking of Promela / C programs
Pervez et.al. using PMPI Instrumentation – EuroPVM / MPI
Demo of One-Sided + a Few MPI Ops (Pervez etal, EuroPVM / MPI 07)

6

Model Checking Approaches for MPI
1. MC Based On “Golden” Semantics of MPI

1. Limited Subsets of MPI / C Translated to TLA+ (FMICS 2007)
2. Limited C Front-End with Slicing using Microsoft Phoenix

2. Hand Modeling / Automated Verif. in Executable Lower
Level Formal Notations
1. Modeling / Verif in Promela (Siegel, Avrunin, et.al. – several papers)
2. Non-Blocking MPI Operations in Promela + C (Siegel)
3. Limited Modeling in LOTOS (Pierre et.al. – in the 90’s)

3. Modeling in MPI / C – Automatic Model Extraction
1. Limited Conversion to Zing (Palmer et.al. – SoftMC 05)
2. Limited Conversion to MPIC-IR (Palmer et.al. – FMICS 07)

4. Direct Model Checking of Promela / C programs
1. Pervez et.al. using PMPI Instrumentation – EuroPVM / MPI
2. Demo of One-Sided + a Few MPI Ops (Pervez etal, EuroPVM / MPI 07)

THIS PAPER : Explain new DPOR Idea Underlying 3.2, 4.2

7

The Importance of Partial Order
Reduction During Model Checking

� With 3 processes, the
size of an interleaved
state space is ps=27

� Partial-order reduction
explores representative
sequences from each
equivalence class

� Delays the execution of
independent transitions

9/9/2007

8

The Importance of Partial Order
Reduction for Model Checking

� With 3 processes, the
size of an interleaved
state space is ps=27

� Partial-order reduction
explores representative
sequences from each
equivalence class

� Delays the execution of
independent transitions

� In this example, it is
possible to “get away”
with 7 states (one
interleaving)

9/9/2007

9

POR in the presence of FIFO Channels…

9/9/2007

S

S

R

R

S

S

R
R

� Can do S, R, S, R
� Or S, S, R, R
� Prefer to do SR, SR

(diagonal)

– This is what the
“urgent” algorithm tries
to do (Siegel)

10

Static POR Won’t Always Do
(Flanagan and Godefroid, POPL 05)

a[j]++ a[k]--

• Action Dependence Determines COMMUTABILITY
(POR theory is really detailed; it is more than
commutability, but let’s pretend it is …)

• Depends on j == k, in this example

• Can be very difficult to determine statically

• Can determine dynamically

11

Similar Situation Arises with Wildcards…

9/9/2007

� Dependencies may not be
fully known, JUST by
looking at enabled actions

� So Conservative
Assumptions to be made (as
in Urgent Algorithm)

� If not, Dependencies may be
Overlooked

� The same problem exists
with other “dynamic
situations”

– e.g. MPI_Cancel

Send(to Q) Recv(from *)

Send(to Q)

Some Stmt

Proc P: Proc Q: Proc R:

12

POR in the presence of Wildcards…

9/9/2007

� Illustration of a Missed
Dependency that would
have been detected, had
Proc R been scheduled
first…

Send(to Q) Recv(from *)

Send(to Q)

Some Stmt

Proc P: Proc Q: Proc R:

13

DPOR Exploits Knowledge of “Future” to
Compute Dependencies More Accurately

Ample determined
using “local” criteria

Current State

Next move of
Red process

Nearest
Dependent
Transition
Looking
Back

Add Red Process to
“Backtrack Set”

This builds the
“Ample set”
incrementally
based on observed
dependencies

Blue is in “Done” set

{ BT }, { Done }

14

How to define “Dependence” for MPI ?

� No a Priori Definition of when Actions Commute

� MPI Offers MANY API Calls

� So need SYSTEMATIC way to define “Dependence”

� CONTRIBUTION OF THIS PAPER:

– Define Formal Semantics of MPI

– Define Commutability Based on Formal Semantics

15

Spec of MPI_Wait (Slide 1/2) – FMICS07

16

Spec of MPI_Wait (Slide 2/2)

17

MPI Formal Specification Organization

9/9/2007

MPI 1.1 API

Point to Point
Operations

Collective
Operations

Requests

Communicator

Collective

Context Group

Constants

18

Example: Challenge posed by a 5-line
MPI program…

9/9/2007

p0: { Irecv(rcvbuf1, from p1);
Irecv(rcvbuf2, from p1); … }

p1: { sendbuf1 = 6; sendbuf2 = 7;
Issend(sendbuf1, to p0);
Isend (sendbuf2, to p0); … }

• In-order message delivery (rcvbuf1 == 6)

• Can access the buffers only after a later wait / test

• The second receive may complete before the first

• When Issend (synch.) is posted, all that is guaranteed
is that Irecv(rcvbuf1,…) has been posted

19

One of our Litmus Tests

20

The Histrionics of FV for HPC (1)

21

The Histrionics of FV for HPC (2)

22

Error-trace Visualization in VisualStudio

23
23

This paper: Simplified Semantics (e.g. as shown by MPI_Wait)

9/9/2007

23

24

Independence Theorems based on
Formal Semantics of MPI Subset

1. Local actions (Assignment, Goto, Alloc, Assert) are
independent of all transitions of other processes.

2. Barrier actions (Barrier_init, Barrier_wait) are
independent of all transitions of other processes.

3. Issend and Irecv are independent of all transitions
of other processes except Wait and Test.

4. Wait and Test are independent of all transitions of
other processes except Issend and Irecv.

9/9/2007

25

Executable Formal Specification and
MPIC Model Checker Integration into VS

9/9/2007

TLA+ MPI
Library Model

TLA+ Prog.
Model

MPIC Program
Model

Visual Studio
2005

Phoenix Compiler

TLC Model Checker MPIC Model
Checker

Verification
Environment

MPIC IR

FMICS 07 PADTAD 07

26

A Simple Example:
e.g. mismatched send/recv causing deadlock

/* Add-up integrals calculated by each process */

if (my_rank == 0) {

total = integral;

for (source = 0; source < p; source++) {

MPI_Recv(&integral, 1, MPI_FLOAT,source,

tag, MPI_COMM_WORLD, &status);

total = total + integral;

}

} else {

MPI_Send(&integral, 1, MPI_FLOAT, dest,

tag, MPI_COMM_WORLD);

}

9/9/2007

p1:to 0 p2:to 0 p3:to 0

p0:fr 0 p0:fr 1 p0:fr 2

27

Partial Demo
of DPOR Tool
for MPIC

28

So, the whole story (i.e. Conclusions)…

� Preliminary Formal Semantics of MPI in Place (50
point-to-point functions)

� Can Model-Check this Golden Semantics
� About 5 of these 30 have a more rigorous

characterization thru Independence Theorems
� For MPI Programs using These MPI functions, we

have a DPOR based model checker MPIC
� Integrated in the VS Framework with MPI-TLC also

� Theory Expected to Carry Over into In-Situ Dynamic
Partial Order Reduction (model-check without
model building – EuroPVM / MPI 2007)

29

Questions ?

The verification environment is downloadable from

http://www.cs.utah.edu/formal_verification/mpic

It is at an early stage of development

30

Answers!
1. We are extending it to Collective Operations

- lesson learned from de Supinski

2. We may perform Formal Testing of MPI Library
Implementations based on the Formal Semantics

3. We plan to analyze mixed MPI / Threads

4. That is a very good question – let’s talk!

