
JThreadSpy

Teaching Multithreading Programming
by Analyzing Execution Traces

Giovanni Malnati, Caterina Maria Cuva, Claudia Barberis

Dipartimento di Automatica e Informatica
Politecnico di Torino

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 2

�Teaching multi-threaded programming is a
difficult task
�Synchronization problems are often

presented only at a very abstract level
�Students have to figure out what happens in

their programs
� Single-threaded programs analysis and debugging

techniques are not useful
� Subsequent executions of the same program can

produce different execution flows
• Intrinsic non-determinism of thread scheduling

Teaching multi-threading: needs

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 3

JThreadSpy: goals

� JThreadSpy is an educational tool
�Aimed at improving students consciousness of race

conditions and multithreading issues
�Useful to detect anomalies in concurrent programs

�Traces are collected during program execution
�Registering relevant events
�A code instrumentation technique is used
�Execution flows are graphically displayed

� Synchronization constructs are shown

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 4

Collecting execution traces

� Manually insert instructions in the source code
� Expensive and error prone approach

� Replace the JVM with a custom one
� Overwhelming task

� Use information provided by the Java Virtual Machine
Tool Interface
� Not available in all JVM implementations
� Not portable across different operating systems

� Use aspect-oriented programming
� Easy to use
� Need of installing the runtime environment
� Need of some notion of aspects

� Not present in every curriculum

� Dynamically instrument bytecode

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 5

Dynamic bytecode instrumentation

� At class load time, bytecode is inspected by a Java agent
registered during the JVM start-up
� Extra instructions are inserted in order to flag method call and

return and relevant synchronization constructs
� When executed, the inserted code will register the corresponding

event in a shared list which will be later saved to a file for
subsequent inspection

� Advantages
� No modification is needed to source code
� Very low latency between the event and its recording, although

some overhead is introduced

� Drawbacks
� Java agent supported only since JVM version 1.5
� Core Java classes cannot be instrumented on the fly

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 6

JThreadSpy architecture

�Java agent
�Instruments classes and

produces a trace file

�Visualizer
�Decodes the trace file and

produces an enhanced
UML sequence diagram

�Eclipse plug-in
�Integrates the above

components inside the IDE

JVM

Java .class
files

Java agentJava agent

VisualizerVisualizer

UML
sequence
diagram

Instrumented
classes

Trace
file

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 7

Registered events (I)

�Two categories of events are logged
�Method invocation

� Object instance’s methods
� Constructors
� Static methods

�Synchronization constructs
� Synchronized methods
� Synchronized blocks of code
� Object.wait()
� Object.notify() e Object.notifyAll()

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 8

Registered events (II)

�Each event record consists of
�An event type
�A unique thread identifier
�A unique object identifier
�The class name of the object
�The class name of the caller object
�The name of the traced method
�The current stack depth
�Three timestamps

� Event start
� Critical section acquisition (for synchronization events)
� Event end

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 9

Code rewriting rules (I)

� Every method is replaced
by a stub
� Original bytecode is

inserted in new private
methods

� “[hidden]” is used to prefix
method names

� The actual method is
called in a try/finally block
� An event is created before

method invocation, with the
initial timestamp

� The finally code updates
the event with the return
timestamp

<anyVisibility> <anyReturnType>

methodName(...) {
//create trace event
TraceEvent te =

new TraceEvent(this, ...);
try {
return [hidden]methodName(...);

} finally {
//update & store trace event
Reporter.exiting(te);

}
}

private <anyReturnType>
[hidden]methodName(...) {
//original code modified
//in order to monitor
//access to critical sections

}

<anyVisibility> <anyReturnType>

methodName(...) {
//create trace event
TraceEvent te =

new TraceEvent(this, ...);
try {
return [hidden]methodName(...);

} finally {
//update & store trace event
Reporter.exiting(te);

}
}

private <anyReturnType>
[hidden]methodName(...) {
//original code modified
//in order to monitor
//access to critical sections

}

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 10

Code rewriting rules (II)

� The previous approach is
not suitable for
constructors
� An overloaded version of

the constructor is
introduced

� For constructors, the
event is created without
an object identifier
� It is set only when the

constructor returns
� If an exception is raised

during the super-class
construction, the
corresponding event is
discarded

<anyVisibility> ClassName(...) {
this(...,
new TraceEvent(null, ...));

}

private ClassName(...,
TraceEvent te) {

super(...);
try {
//set trace event object id

//original code modified
//in order to monitor
//access to critical sections

//before each return instruction,
//the trace event is updated
//with the proper timestamp

} catch(Throwable t) {
//update & store trace event

}
}

<anyVisibility> ClassName(...) {
this(...,
new TraceEvent(null, ...));

}

private ClassName(...,
TraceEvent te) {

super(...);
try {
//set trace event object id

//original code modified
//in order to monitor
//access to critical sections

//before each return instruction,
//the trace event is updated
//with the proper timestamp

} catch(Throwable t) {
//update & store trace event

}
}

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 11

Code rewriting rules (III)

� Synchronized methods
need to acquire a lock in
order to actually start
� Same result of executing

their code within a
synchronized block of code

� Code is rewritten similarly
to other methods
� New private methods are

not synchronized
� They are called within a

synchronized block of code
� The lock acquisition

timestamp is set before
calling the method

<anyVisibility> <anyReturnType>
methodName(...) {
TraceEvent te =
new TraceEvent(this, ...);

try {
synchronized(this) {
//update acquisition time
//in the trace event
return [hidden]methodName(...);

}
} finally {
// update & store trace event
Reporter.exiting(te);

}
}

private <anyReturnType>
[hidden]methodName(...) {
// original code modified
// in order to monitor
// access to critical sections
}

<anyVisibility> <anyReturnType>
methodName(...) {
TraceEvent te =
new TraceEvent(this, ...);

try {
synchronized(this) {
//update acquisition time
//in the trace event
return [hidden]methodName(...);

}
} finally {
// update & store trace event
Reporter.exiting(te);

}
}

private <anyReturnType>
[hidden]methodName(...) {
// original code modified
// in order to monitor
// access to critical sections
}

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 12

Code rewriting rules (III)

� Synchronized blocks of code are enclosed within a
try/finally block
� An event is created before synchronized block

� Contains the start event timestamp

� The lock acquisition timestamp is set before the first instruction of
the synchronized block

� The code in the finally block sets the release timestamp

� wait() instructions are enclosed within a try/finally block
� An event is created before wait() instruction

� Contains the start event timestamp

� The finally code sets the end timestamp

� notify() and notifyAll() instructions
� A single timestamp is recorded

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 13

events

trace collection
model

reporter

Execution trace file generation

�A shutdown hook is
registered
�Launched when the JVM

shutdown starts
�Sets end timestamps of

events not yet terminated
� Useful in case of

System.exit() invocation

�Serializes events into a file
for the subsequent
visualization

start method or
synchronization

end method or
synchronization

start
events

Instrumented
classes

shutdown hook

Trace
file

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 14

UML sequence diagram

�Standard notation is
used where available
�Object instances
�Lifelines
�Activation lines
�Method invocations
�Timeline

� Starts from the top of the
diagram

� Time increases
downwards

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 15

Augmented UML notation (I)

�Static method invocation
�Related to the class of

the method
�Represented with a

rounded rectangle
�Other rules as for

standard objects

�One trace for each
thread
�Each thread is drawn with

a different colour

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 16

Augmented UML notation (II)

�Sometimes, methods
are called from non-
instrumented code
�Represented with a

broken horizontal
arrow

�A wave-shaped
vertical line depicts
execution taking
place in non-
instrumented code

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 17

Augmented UML notation (III)

�Synchronization
�A padlock identifies

� Synchronized method calls
� Synchronized blocks of code

�Synchronized blocks of code are marked with dotted
start and end arrows

�An hourglass identifies wait instructions
�An exclamation mark is used for notify instructions

� notifyAll is represented by a double exclamation mark

�A dotted and dashed line on the left of the lifeline
identifies a thread waiting for lock acquisition

�A semi-transparent rectangle overlapping the lifeline
shows that the thread owns the object lock

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 18

Augmented UML notation (IV)

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 19

Results

�First student feedbacks are generally positive
�The tool helps in creating a visual representation of

the execution of programs
� It stimulates personal experimentation and it highlights

several details of the inner working of the JVM, which
are often disregarded in OO courses

�People tend to engage more and to contribute to the
improvement of the tool with useful suggestions

�Still a lot of work to be done
�Currently tested only with a small “controlled” group

(15 people)
�Next year it will be used with the whole class (about

150 students)

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 20

Current issues and future work

� Enhance the code rewrite engine
� Provide support for the semantics of the Java Synchronization

Framework classes and interfaces
� Trace access to object fields

� Introduce reasoning about collected data
� Highlight possible conflicts
� Identify blocked threads
� Provide suggestions about possible anti-patterns

� Improve the usability of the visualizer
� Print information about the pointed object
� Introduce a navigation modality, in order to follow the execution

of a given thread, automatically scrolling back and forth
� Support dynamic object layout rearrangement

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 21

JThreadSpy in action

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 22

Thank you!

giovanni.malnati@polito.it

caterina.cuva@polito.it

