JThreadSpy

Teaching Multithreading Programming
by Analyzing Execution Traces

Giovanni Malnati, Caterina Maria Cuva, Claudia Barberis

Dipartimento di Automatica e Informatica
Politecnico di Torino

Teaching multi-threading: needs ‘s
.
» Teaching multi-threaded programming Is a

difficult task

v"Synchronization problems are often
presented only at a very abstract level

v'Students have to figure out what happens in

their programs
Single-threaded programs analysis and debugging
techniques are not useful
Subsequent executions of the same program can

produce different execution flows

Intrinsic non-determinism of thread scheduling
July 9th 2007 Giovanni Malnati, Caterina Maria Cuva

JThreadSpy: goals =

0"

B,
e
N
1=

i
1Y
F
i

QQ

ey
Nl '|
°ﬁ gt

o7

» JThreadSpy Is an educational tool

v Aimed at improving students consciousness of race
conditions and multithreading issues

v Useful to detect anomalies in concurrent programs

» Traces are collected during program execution
v Registering relevant events
v" A code instrumentation technique is used

v Execution flows are graphically displayed
Synchronization constructs are shown

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 3

L

bR

Collecting execution traces =

B

N

S

& 1E

=

fa

F ¥y

Ly
.-_-"\:“‘

\

» Manually insert instructions in the source code
v Expensive and error prone approach

» Replace the JVM with a custom one
v Overwhelming task

» Use information provided by the Java Virtual Machine
Tool Interface

v Not available in all JVM implementations
v Not portable across different operating systems

» Use aspect-oriented programming
v Easy to use
v Need of installing the runtime environment
v" Need of some notion of aspects
Not present in every curriculum

» Dynamically instrument bytecode

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 4

Dynamic bytecode instrumentation %ﬁ*

! b

» At class load time, bytecode Is inspected by a Java agent
registered during the JVM start-up

v" Extra instructions are inserted in order to flag method call and
return and relevant synchronization constructs

v" When executed, the inserted code will register the corresponding
event in a shared list which will be later saved to a file for
subsequent inspection

» Advantages
v" No modification is needed to source code

v Very low latency between the event and its recording, although
some overhead is introduced

» Drawbacks 01101,
v Java agent supported only since JVM version 1.5
v Core Java classes cannot be instrumented on the fly

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 5

T
/:,*','-L-"""""{-f?:',-\
Ly]

<0

" /_:'CI

(ST Fi-h
3‘-,:1\3-’
28 gt

@

€

%
.

JThreadSpy architecture

[
Java .class
files

»Java agent

/Instruments classesand ~ —7
produces a trace file EJVM

Java agent

> Visualizer A —:

v'Decodes the trace file and I siliodon H 5
produces an enhanced e I |
UML sequence diagram

» Eclipse plug-in

v'Integrates the above Visualizer

components inside the IDE f

UML
sequence

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva diagram 6

Registered events ()

» Two categories of events are logged

v"Method invocation =>
Object instance’s methods

Constructors <=

Static methods

v'Synchronization constructs
Synchronized methods
Synchronized blocks of code
Object.wait()
Object.notify() e Object.notifyAll()

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva

Registered events (I1) A

» Each event record consists of
v"An event type ,
v" A unique thread identifier /\é
v" A unigue object identifier
v The class name of the object
v The class name of the caller object
v" The name of the traced method
v The current stack depth

v Three timestamps
Event start
Critical section acquisition (for synchronization events)
Event end

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 8

Code rewriting rules (I)

» Every method is replaced
by a stub

v" Original bytecode is
inserted in new private
methods

v “[hidden]” is used to prefix
method names
» The actual method is
called in a try/finally block

v" An event is created before
method invocation, with the
Initial timestamp

v" The finally code updates
the event with the return
timestamp

July 9th 2007 Giovanni Malnati,

<anyVisibility> <anyRet urnType>
met hodNanme(...) {
/[/create trace event
Tracekvent te =

new TraceEvent(this, ...);
try {

return [hidden] net hodNane(...);
} finally {

//update & store trace event
Reporter.exiting(te);

}
}

private <anyReturnType>

[hi dden] net hodNanme(...) {
//original code nodified
[/in order to nonitor
//access to critical sections

}

Caterina Maria Cuva

Code rewriting rules (I1)

» The previous approach is
not suitable for
constructors

v" An overloaded version of
the constructor is
introduced

» For constructors, the
event is created without
an object identifier

v It is set only when the
constructor returns

v If an exception is raised
during the super-class
construction, the
corresponding event is
discarded

July 9th 2007 Giovanni Malnati,

<anyVisibility> dassNanme(...) {
this(...,
new TraceEvent (null, ...));

}

private C assNane(. ..,
TraceEvent te) {
super(...);
try {
//set trace event object id

//original code nodified
[/1n order to nonitor
[/ access to critical sections

/| before each return instruction,
//the trace event is updated
[/wth the proper tinestanp

} catch(Throwable t) {
//update & store trace event

Caterina Maria Cuva 10

Code rewriting rules (lil)

» Synchronized methods
need to acquire a lock in
order to actually start

v" Same result of executing
their code within a
synchronized block of code

» Code is rewritten similarly
to other methods

v" New private methods are
not synchronized

v They are called within a
synchronized block of code

v The lock acquisition
timestamp is set before
calling the method

July 9th 2007 Giovanni Malnati,

<anyVisibility> <anyRet urnType>
met hodNanme(...) {
TraceEvent te =
new TraceEvent (this, ...);
try {
synchroni zed(this) {
/lupdate acquisition tine
//in the trace event
return [hidden]nmet hodNane(...);

}

} finally {
/'l update & store trace event

Reporter.exiting(te);

}
}

private <anyReturnType>
[hi dden] net hodNanme(...) {
/1 original code nodified
[/ in order to nonitor
/] access to critical sections

}

Caterina Maria Cuva 11

o
%

Code rewriting rules (Il e

o7

\

» Synchronized blocks of code are enclosed within a
try/finally block
v" An event is created before synchronized block
Contains the start event timestamp

v" The lock acquisition timestamp is set before the first instruction of
the synchronized block

v The code in the finally block sets the release timestamp

» wait() instructions are enclosed within a try/finally block

v" An event is created before wait() instruction
Contains the start event timestamp

v" The finally code sets the end timestamp

» notify() and notifyAll() instructions
v" A single timestamp is recorded

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 12

.

L

S

& 1E

=

fa

F ¥y

. e
.-_-"\:“‘

Execution trace file generation ‘&

k- o7

> A shutdown hook is stumented M
regiStered classes

———

'trace collection start method or

v Launched when the JVM :model synchronization
shutdown starts " [reporter
. : - end method —
v Sets end timestamps of g [| symchronization | |
- i start > |
events not yet terminated | | cens —|events| |

Useful in case of - N
System.exit() invocation '

v Serializes events into a file ——— :
for the subsequent
visualization *

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 13

UML sequence diagram

ey

» Standard notation Is

used where available =

v Obiject instances __m_eulmz

v Lifelines i)

v Activation lines (R |

v Method invocations S

v Timeline - =ﬂm;::mgOmmmt}
Starts from the top of the [
diagram -f
Time increases Hmetort?
downwards i)

N

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 14

Augmented UML notation ()

» Static method invocation

v Related to the class of _
the method @

v Represented with a i ’

=

rounded rectangle
v Other rules as for
standard objects
» One trace for each
thread v —————— I

¥ 01:p1.0bject?

_ java. lang. Object init=

I

v Each thread is drawn wit
a different colour

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva

15

¥ 3

Augmented UML notation (I1) .

! b

L%
A

» Sometimes, methods

are called from non- .jCj dl
InStrumented COde 'wl* oZ:gmiMuovoTest
v'Represented with a - -- Al
broken horizontal] |
alrrfow {:windnwcmsing
v'A wave-shaped S I ﬂ

vertical line depicts
execution taking
place In non-
Instrumented code

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 16

.
%

B,
& 3
i

|

f
pog!
QQ

Augmented UML notation (Ill) ‘&4

! b

A

» Synchronization

v" A padlock identifies

Synchronized method calls
Synchronized blocks of code

v Synchronized blocks of code are marked with dotted
start and end arrows

v An hourglass identifies wait instructions

v"An exclamation mark is used for notify instructions
notifyAll is represented by a double exclamation mark

v" A dotted and dashed line on the left of the lifeline
identifies a thread waiting for lock acquisition

v A semi-transparent rectangle overlapping the lifeline
shows that the thread owns the object lock

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 17

Augmented UML notation (1V)

@ acouire

158452445 ns 1

15.952.265 ns

16.036.0249 ns ;
Y

release

25793 445 ns
29.902.404 ns |

:
29.921.563 ns I

I
26.034.705 ns I
26.047.037 ns

26.056 9496 ns

26.085.140 ns . e e = ,]
July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 18

%

R

! b

Rt

B
A

» First student feedbacks are generally positive

v The tool helps in creating a visual representation of
the execution of programs

v It stimulates personal experimentation and it highlights
several details of the inner working of the JVM, which
are often disregarded in OO courses

v People tend to engage more and to contribute to the
Improvement of the tool with useful suggestions

» Still a lot of work to be done

v" Currently tested only with a small “controlled” group
(15 people)

v Next year it will be used with the whole class (about
150 students)

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 19

T
S

& 1L

=

1Y

d -

: =%

o

Current issues and future work ‘s

! b

» Enhance the code rewrite engine

v" Provide support for the semantics of the Java Synchronization
Framework classes and interfaces

v Trace access to object fields

» Introduce reasoning about collected data

v" Highlight possible conflicts
v" ldentify blocked threads
v" Provide suggestions about possible anti-patterns

» Improve the usabillity of the visualizer

v" Print information about the pointed object

v" Introduce a navigation modality, in order to follow the execution
of a given thread, automatically scrolling back and forth

v Support dynamic object layout rearrangement

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 20

JThreadSpy In action

& Java - ScreenGrabber.java - Eclipse SDK
File Edit Source Refactor Mavigate Search Project Rum Window Help

O EHE i sy B G A B 2@] R &2 va |

ug JThr y Visug x

java.awt java.awt
ScreenGrabber EventQueus Toolkt

=

Frnblens% Javadoc : Dedaration | Console

static
main

Ons L ————

ol
8.533,208 ns

ScreenGrabbersi
avaJang.Object.<int>

8.642.439 ns

8.815.925ns

R R
PR s

8.853.081ns

static

8.879.341 ns invokeLater

-

b
ey

72344670 ns

B e)

72359476 ns O e

u
73.330.270 ns [

0Z
javax.swing.
JFrame

74.234.016 ns

166.180.618 ns

[=kH
167.168.453 ns

ScreenGrabber

167.338.866 ns

34
i
i
i
B r
BT
i
iy
3%
i
3%
i
i
i
i
i
3
33
3%
i
i
i
i
i
B r
i
i
3%
i
i
i
i
i
i
i
i
i
i
i
i
i
BN
BN

i

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 21

Thank you!

giovanni.malnati@polito.it
caterina.cuva@polito.it

July 9th 2007 Giovanni Malnati, Caterina Maria Cuva 22

