
JThreadSpy

Teaching Multithreading Programming 
by Analyzing Execution Traces

Giovanni Malnati, Caterina Maria Cuva, Claudia Barberis

Dipartimento di Automatica e Informatica
Politecnico di Torino



July 9th 2007 Giovanni Malnati,   Caterina Maria Cuva 2

�Teaching multi-threaded programming is a 
difficult task
�Synchronization problems are often  

presented only at a very abstract level
�Students have to figure out what happens in 

their programs
� Single-threaded programs analysis and debugging 

techniques are not useful
� Subsequent executions of the same program can 

produce different execution flows
• Intrinsic non-determinism of thread scheduling

Teaching multi-threading: needs
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JThreadSpy: goals

� JThreadSpy is an educational tool
�Aimed at improving students consciousness of race 

conditions and multithreading issues
�Useful to detect anomalies in concurrent programs

�Traces are collected during program execution
�Registering relevant events 
�A code instrumentation technique is used
�Execution flows are graphically displayed

� Synchronization constructs are shown
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Collecting execution traces

� Manually insert instructions in the source code
� Expensive and error prone approach

� Replace the JVM with a custom one
� Overwhelming task

� Use information provided by the Java Virtual Machine 
Tool Interface
� Not available in all JVM implementations
� Not portable across different operating systems

� Use aspect-oriented programming
� Easy to use
� Need of installing the runtime environment
� Need of some notion of aspects

� Not present in every curriculum

� Dynamically instrument bytecode
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Dynamic bytecode instrumentation

� At class load time, bytecode is inspected by a Java agent 
registered during the JVM start-up
� Extra instructions are inserted in order to flag method call and

return and relevant synchronization constructs
� When executed, the inserted code will register the corresponding

event in a shared list which will be later saved to a file for 
subsequent inspection

� Advantages
� No modification is needed to source code
� Very low latency between the event and its recording, although 

some overhead is introduced

� Drawbacks
� Java agent supported only since JVM version 1.5
� Core Java classes cannot be instrumented on the fly
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JThreadSpy architecture

�Java agent
�Instruments classes and 

produces a trace file

�Visualizer
�Decodes the trace file and 

produces an enhanced 
UML sequence diagram

�Eclipse plug-in
�Integrates the above 

components inside the IDE

JVM

Java .class
files

Java agentJava agent

VisualizerVisualizer

UML
sequence 
diagram

Instrumented
classes

Trace
file
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Registered events (I)

�Two categories of events are logged
�Method invocation

� Object instance’s methods 
� Constructors
� Static methods

�Synchronization constructs
� Synchronized methods
� Synchronized blocks of code
� Object.wait()
� Object.notify() e Object.notifyAll()
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Registered events (II)

�Each event record consists of
�An event type
�A unique thread identifier
�A unique object identifier
�The class name of the object
�The class name of the caller object
�The name of the traced method
�The current stack depth
�Three timestamps

� Event start
� Critical section acquisition (for synchronization events)
� Event end
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Code rewriting rules (I)

� Every method is replaced 
by a stub
� Original bytecode is 

inserted in new private 
methods

� “[hidden]” is used to prefix 
method names

� The actual method is 
called in a try/finally block
� An event is created before 

method invocation, with the 
initial timestamp

� The finally code updates 
the event with the return 
timestamp

<anyVisibility> <anyReturnType>

methodName(...) {
//create trace event
TraceEvent te =

new TraceEvent(this, ...);
try {
return [hidden]methodName(...);

} finally {
//update & store trace event
Reporter.exiting(te);

}
}

private <anyReturnType>
[hidden]methodName(...) {
//original code modified
//in order to monitor 
//access to critical sections

}

<anyVisibility> <anyReturnType>

methodName(...) {
//create trace event
TraceEvent te =

new TraceEvent(this, ...);
try {
return [hidden]methodName(...);

} finally {
//update & store trace event
Reporter.exiting(te);

}
}

private <anyReturnType>
[hidden]methodName(...) {
//original code modified
//in order to monitor 
//access to critical sections

}
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Code rewriting rules (II)

� The previous approach is 
not suitable for 
constructors
� An overloaded version of 

the constructor is 
introduced

� For constructors, the 
event is created without 
an object identifier
� It is set only when the 

constructor returns
� If an exception is raised 

during the super-class 
construction, the 
corresponding event is 
discarded

<anyVisibility> ClassName(...) {
this(...,
new TraceEvent(null, ...));

}

private ClassName(...,
TraceEvent te) {

super(...);
try {
//set trace event object id

//original code modified
//in order to monitor
//access to critical sections

//before each return instruction,
//the trace event is updated
//with the proper timestamp

} catch(Throwable t) {
//update & store trace event

}
}

<anyVisibility> ClassName(...) {
this(...,
new TraceEvent(null, ...));

}

private ClassName(...,
TraceEvent te) {

super(...);
try {
//set trace event object id

//original code modified
//in order to monitor
//access to critical sections

//before each return instruction,
//the trace event is updated
//with the proper timestamp

} catch(Throwable t) {
//update & store trace event

}
}
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Code rewriting rules (III)

� Synchronized methods 
need to acquire a lock in 
order to actually start
� Same result of executing 

their code within a 
synchronized block of code

� Code is rewritten similarly 
to other methods
� New private methods are 

not synchronized
� They are called within a 

synchronized block of code
� The lock acquisition 

timestamp is set before 
calling the method

<anyVisibility> <anyReturnType>
methodName(...) {
TraceEvent te = 
new TraceEvent(this, ...);

try {
synchronized(this) {
//update acquisition time
//in the trace event
return [hidden]methodName(...);

}
} finally {
// update & store trace event
Reporter.exiting(te);

}
}

private <anyReturnType>
[hidden]methodName(...) {
// original code modified
// in order to monitor
// access to critical sections
}

<anyVisibility> <anyReturnType>
methodName(...) {
TraceEvent te = 
new TraceEvent(this, ...);

try {
synchronized(this) {
//update acquisition time
//in the trace event
return [hidden]methodName(...);

}
} finally {
// update & store trace event
Reporter.exiting(te);

}
}

private <anyReturnType>
[hidden]methodName(...) {
// original code modified
// in order to monitor
// access to critical sections
}
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Code rewriting rules (III)

� Synchronized blocks of code are enclosed within a 
try/finally block
� An event is created before synchronized block

� Contains the start event timestamp

� The lock acquisition timestamp is set before the first instruction of 
the synchronized block

� The code in the finally block sets the release timestamp

� wait() instructions are enclosed within a try/finally block
� An event is created before wait() instruction

� Contains the start event timestamp

� The finally code sets the end timestamp

� notify() and notifyAll() instructions
� A single timestamp is recorded 
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events

trace collection
model

reporter

Execution trace file generation

�A shutdown hook is 
registered
�Launched when the JVM 

shutdown starts
�Sets end timestamps of 

events not yet terminated
� Useful in case of 

System.exit() invocation

�Serializes events into a file 
for the subsequent 
visualization

start method or 
synchronization

end method or 
synchronization

start 
events

Instrumented 
classes

shutdown hook

Trace 
file
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UML sequence diagram

�Standard notation is 
used where available
�Object instances
�Lifelines
�Activation lines
�Method invocations
�Timeline

� Starts from the top of the 
diagram

� Time increases 
downwards
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Augmented UML notation (I)

�Static method invocation
�Related to the class of 

the method
�Represented with a 

rounded rectangle
�Other rules as for 

standard objects

�One trace for each 
thread
�Each thread is drawn with 

a different colour
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Augmented UML notation (II)

�Sometimes, methods 
are called from non-
instrumented code
�Represented with a 

broken horizontal 
arrow

�A wave-shaped 
vertical line depicts 
execution taking 
place in non-
instrumented code
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Augmented UML notation (III)

�Synchronization
�A padlock identifies

� Synchronized method calls
� Synchronized blocks of code

�Synchronized blocks of code are marked with dotted 
start and end arrows

�An hourglass identifies wait instructions
�An exclamation mark is used for notify instructions

� notifyAll is represented by a double exclamation mark

�A dotted and dashed line on the left of the lifeline 
identifies a thread waiting for lock acquisition

�A semi-transparent rectangle overlapping the lifeline 
shows that the thread owns the object lock
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Augmented UML notation (IV)
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Results

�First student feedbacks are generally positive
�The tool helps in creating a visual representation of 

the execution of programs
� It stimulates personal experimentation and it highlights 

several details of the inner working of the JVM, which 
are often disregarded in OO courses

�People tend to engage more and to contribute to the 
improvement of the tool with useful suggestions

�Still a lot of work to be done
�Currently tested only with a small “controlled” group 

(15 people)
�Next year it will be used with the whole class (about 

150 students)
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Current issues and future work

� Enhance the code rewrite engine
� Provide support for the semantics of the Java Synchronization 

Framework classes and interfaces
� Trace access to object fields

� Introduce reasoning about collected data
� Highlight possible conflicts
� Identify blocked threads
� Provide suggestions about possible anti-patterns

� Improve the usability of the visualizer
� Print information about the pointed object
� Introduce a navigation modality, in order to follow the execution 

of a given thread, automatically scrolling back and forth
� Support dynamic object layout rearrangement
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JThreadSpy in action
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Thank you!

giovanni.malnati@polito.it

caterina.cuva@polito.it


