Provably Pointless Propagation Calls

Chris Jefferson, Karen E. Petrie and Dave Cohen

Overview

- Solvers propagate constraints to remove domain values.
- If we can avoid calling propagators we can speed up solvers

Propagating SAT

 $a \lor b \lor c \lor d \lor e$

- Each variable has domain contained in {true, false}
- Remove values which occur in no solution

Propagating SAT

 $a \lor b \lor c \lor d \lor e$

One rule to get all propagation:

If all but one variable assigned *false*: Assign other variable *true*.

0/1	0/1	0/1	0/1
a	Ь	U	d

Variables Assigned False: 0

0	0/1	0/1	0/1
a	Ь	C	В

Variables Assigned False: I

0	0/1	0	0/1
a	Ь	C	В

Variables Assigned False: 2

0	0	0	0/1
a	Ь	C	Ъ

Variables Assigned False: 3

0	0	0	
a	Ь	C	Ъ

Variables Assigned False: 3

Propagation

- Can we reduce / change those requirements?
 - Need to trigger on all assignments?
 - Need to count assigned variables?

SAT Propagation

• Idea: If two variables are either unassigned or assigned true, no need to do anything.

• If can't find two, have to propagate or fail.

0/1	0/1	??	??
a	Ь	C	В

0/1	0/1	0/1	0/1
a	Ь	С	Ъ

Triggers:

0	0/1	0/1	0/1
a	b	С	Ъ

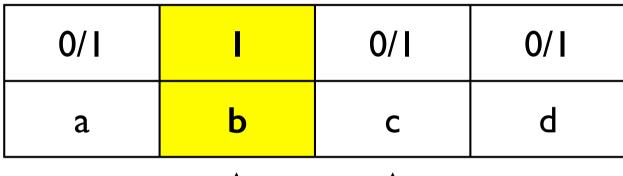
Triggers:

- a assigned false.
- Update pointer.

0	0/1	0/1	0/1
a	b	С	Ъ

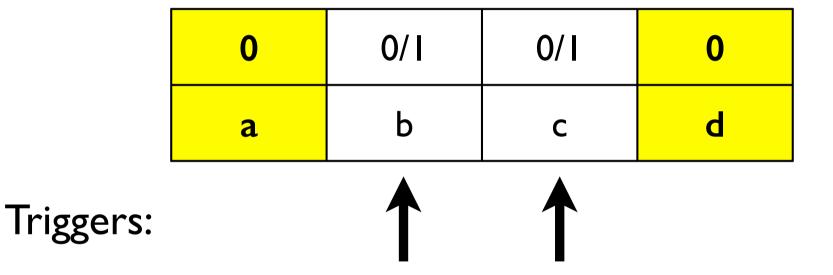
Triggers:

- a assigned false.
- Update pointer.

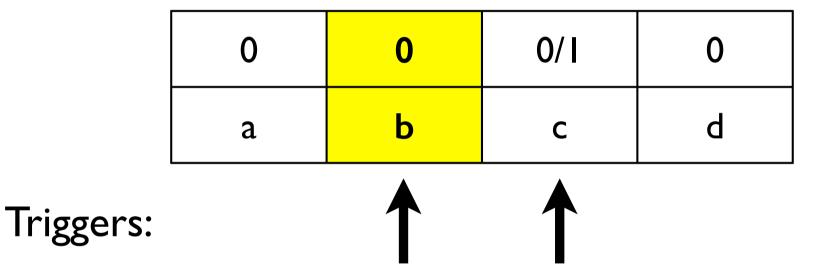

0/1	0/1	0/1	0/1
a	Ь	С	Ъ

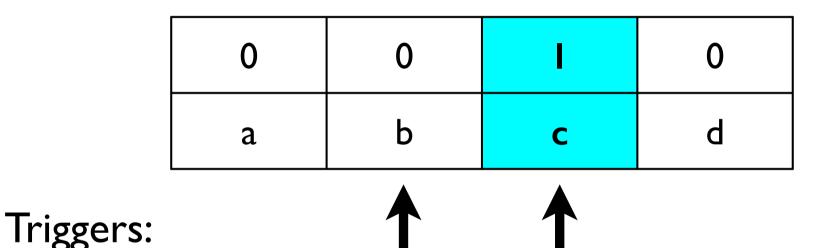
Triggers:

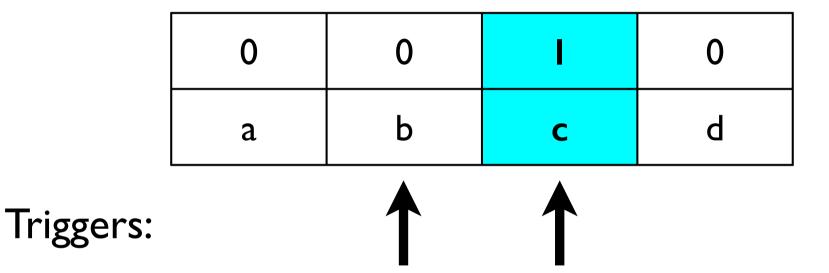
• Backtrack. a unassigned.



Triggers:




If b is assigned true,
 pointer doesn't move.


• If other variables assigned, nothing happens!

• If we cannot find something new to watch...

Assign other watch!

Leave triggers where they are!

Dynamic Support & Watched Literals

- One feature of Watched Literals is that they do not move during backtrack
- We ignore that feature in this paper
 - It means we need to consider the effect on backtracking, which is surprisingly difficult
 - The theory is hard enough already!

Dynamic Triggers

- Minion supports both static (non-moving) and dynamic triggers.
 - Dynamic triggers have up to 2x overhead.
- But, when you only need a few, they provide a massive speedup!

Previous Papers

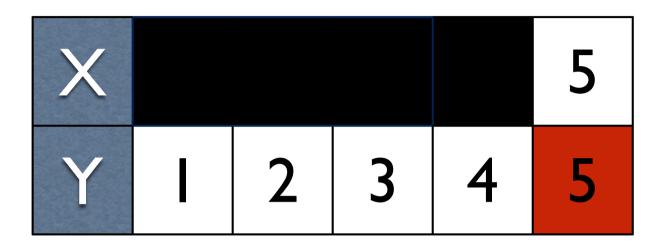
- SAT clause: I0x speedup
- Element: 3x speedup
- Table: 2x speedup
- Constraint Disjunction: 50x speedup
- Half-reification: I0x speedup

Previous Papers

- AllDifferent: (mostly) slower
- Global Cardinality constraint: slower
- GAC Lexicographic Ordering: small speedup

Support

- A support is a set of literals where:
 - If none of them are removed, propagator will do nothing


Questions

- Given a propagator and set of domains:
 - Are a given set of literals a support?
 - Is there a set of literals of size < n?</p>

X	2	3	4	5
Y	2	3	4	5

X				4	5
Y	I	2	3	4	5

X				5
Y	2	3	4	5

X	2	3	4	5
Y	2	3	4	5

X	-	2	3	4	5
Y	-	2	3	4	5

X=Y

X		3	4	5
Y	2	3	4	5

X=Y

X		3	4	5
Y	2	3	4	5

X=Y

X	2	3	4	5
Y	2	3	4	5

A	0	2	3	4
В	0	2	3	4
C	0	2	3	4
D	0	2	3	4

A	0	2	3	4
В	0	2	3	4
C	0	2	3	4
D	0	2	3	4

A	0		2	3	4
В	0	_	2	3	4
C	0	_	2	3	4
D	0		2	3	4

$$A+B+C+D \ge 4$$

A	0	2	3	4
В	0			
C	0			
D	0			

A	0	2	3	4
В	0			
C	0			
D	0			

A	0		2	3	4
В	0	_	2	3	4
C	0	-	2	3	4
D	0		2	3	4

A	0		2	3	4
В	0	_	2	3	4
C	0	_	2	3	4
D	0		2	3	4

$M_{Index} = Result$

Mı	2	3	4
M_2	2	ന	4
M_3	2	3	4

Index I 2 3

Result I 2 3 4

$M_{Index} = Result$

Mı	2	3	4
M_2	2	ന	4
M_3	2	3	4

Index
I
2
3

Result
I
2
3
4

$M_{Index} = Result$

Mı		2	3	4
M_2	_	2	3	4
M_3		2	3	4

Index I 2 3

Result I 2 3 4

Support

 Full Supports are stitched together from sets of literals which support some subset.

Finding Supports

- How hard is it to check a support is valid?
 - Can be NP-hard, even for propagators which run in polynomial time.

$$(M[X,Y] = A) \land (A = B)$$

Different Propagator Levels

- What about weaker propagators?
 - Sometimes makes support, sometimes increases it!

Trivially Fixable

- Given a constraint C
- Any non-satisfying assignment A
- Change any assignment to any variable in A, get a satisfying assignment.

Trivially Fixable

$$A+B+C+D \neq E$$
 $a \lor b \lor c \lor d$

$$Parity$$

Why Trivially Fixable

Forwarding Checking == GAC if and only if a constraint is Trivially Fixable

Supports for Forward Checking

- Watch two different values in two different variables.
 - If only one (or no) variables or unassigned, run FC propagator!

Static Triggering

- What if we are forced to place all triggers on at the start of search?
 - We show which literals you have to watch (usually, all of them).
 - ... if you can only watch literals

Other Trigger Types

- Solvers usually have other types of triggers
 - Maximum / Minimum Domain Value
 - Variable Assigned
 - Variable Changed

Conclusions

- Dynamic supports are useful sometimes...
- But not always!

Further investigation needed!