
IBM Labs in Haifa

Choosing among Alternative Pasts

ØMarina Biberstein
Eitan Farchi
Shmuel Ur



IBM Labs in Haifa

2

Table of contents

What’s the problem?

Choosing among the pasts

Soundness and value visibility

Conclusions



IBM Labs in Haifa

3

Some problems in testing multithreaded programs

³ Only few of the possible interleavings are usually generated for a given 
environment



IBM Labs in Haifa

4

Some problems in testing multithreaded programs

³ Only few of the possible interleavings are usually generated for a given 
environment

public class Print extends Thread{
private String message;
public Print(String _message){message = _message;}
public void run(){System.out.print(message);}

}
public class Main{

public static void main(String[] arguments){
Print p1 = new Print(“Hello, “);
Print p2 = new Print(“world!\n”);
p1.start();
p2.start();

}
} ³ Almost always the output will be “Hello, world!”



IBM Labs in Haifa

5

³ Only few of the possible interleavings are usually generated for a given 
environment

³ There are a lot of possible interleavings

Some problems in testing multithreaded programs

x=0

t0=x

t1=t0+2

x=t1

x=5

Here and later: 
• x, y, z are shared variables
• t0, t1,t2 are locals



IBM Labs in Haifa

6

³ Only few of the possible interleavings are usually generated for a given 
environment

³ There are a lot of possible interleavings

Some problems in testing multithreaded programs

x=0

t0=x

t1=t0+2

x=t1

x=5



IBM Labs in Haifa

7

³ Only few of the possible interleavings are usually generated for a given 
environment

³ There are a lot of possible interleavings

Some problems in testing multithreaded programs

x=0

t0=x

t1=t0+2

x=t1

x=5



IBM Labs in Haifa

8

³ Only few of the possible interleavings are usually generated for a given 
environment

³ There are a lot of possible interleavings

Some problems in testing multithreaded programs

x=0

t0=x

t1=t0+2

x=t1

x=5



IBM Labs in Haifa

9

³ Only few of the possible interleavings are usually generated for a given 
environment

³ There are a lot of possible interleavings

Some problems in testing multithreaded programs

x=0

t0=x

t1=t0+2

x=t1

x=5



IBM Labs in Haifa

10

³ Only few of the possible interleavings are usually generated for a given 
environment

³ There are a lot of possible interleavings

Some problems in testing multithreaded programs

x=0

t0=x

t1=t0+2

x=t1

x=5



IBM Labs in Haifa

11

³ Only few of the possible interleavings are usually generated for a given 
environment

³ There are a lot of possible interleavings
³ But only few of these interleavings are necessary to achieve coverage!

Some problems in testing multithreaded programs

x=0

t0=x

t1=t0+2

x=t1

x=5

x=0

t0=x

t1=t0+2

x=t1

x=5



IBM Labs in Haifa

12

³ Physical schedule: a linear ordering of all events
³ Logical schedule: equivalence class of all physical schedules that agree 

on critical events (Choi & Srinivasan, ’98)
²Critical events: access shared variable, enter/exit monitor, …

Schedules: logical vs. physical

x=0

t0=x

t1=t0+2

x=t1

x=5

x=0

t0=x

t1=t0+2

x=t1

x=5



IBM Labs in Haifa

13

³ Physical schedule: a linear ordering of all events
³ Logical schedule: equivalence class of all physical schedules that agree 

on critical events (Choi & Srinivasan, ’98)
²Critical events: access shared variable, enter/exit monitor, …

Schedules: logical vs. physical

x=0

t0=x

x=t1

x=5



IBM Labs in Haifa

14

Let’s take the idea another step forward…



IBM Labs in Haifa

15

³ Logical schedules that agree on values read by all read events –
produce the same results

Schedules: value vs. logical

x=0

t0=x

x=t1

x=5

x=0

t0=x

x=t1

x=5

x=2 x=2



IBM Labs in Haifa

16

³ Logical schedules that agree on values read by all read events –
produce the same results

³ Value schedule: equivalence class of all logical schedules that agree on 
values consumed by read events

Schedules: value vs. logical

x=0

t0=x
x=5

x=t1

x=2



IBM Labs in Haifa

17

Choosing among alternative pasts

³ Testing goal: 
²Generate runs with different outcomes
Ø Interfere with runtime to generate many different value schedules

³ Value substitution process:
²Execute the program, record critical events by thread
² Interfere at shared variables’ reads

±Provide one of older values instead of the current one

²Observation: the same effect as if a different value schedule had 
actually taken place



IBM Labs in Haifa

18

Choosing among alternative pasts

x=1 y=2

y=1

x=0

y=0

print(x,y)



IBM Labs in Haifa

19

Choosing among alternative pasts

x=1 y=2

y=1

x=0

y=0

print(x,y)



IBM Labs in Haifa

20

Choosing among alternative pasts

x=1 y=2

y=1

x=0

y=0

print(x,y)



IBM Labs in Haifa

21

Choosing among alternative pasts

x=1 y=2

y=1

x=0

y=0

print(x,y)

x=1 y=2

y=1

x=0

y=0

print(x,y)



IBM Labs in Haifa

22

Sound value substitutions

³ Problem: illegal value choices
²Values that are impossible to obtain in a legal run



IBM Labs in Haifa

23

Sound value substitutions

x=1 y=2

y=1

x=0

y=0
initialization

print(x,y)

³ Impossible output:
³0,1



IBM Labs in Haifa

24

Sound value substitutions

x=1 y=2

y=1

x=0

y=0
initialization

print(x,y)

³ Impossible output:
³0,1



IBM Labs in Haifa

25

Sound value substitutions

³ Problem with value substitution: illegal value choices
²Values that are impossible to obtain in a legal run

³ How can we identify the sound choices?



IBM Labs in Haifa

26

Sound value substitutions

x=1 y=2

y=1

x=0

y=0

print(x,y)

x=1
y=2

y=1
print(x,y)

x=0 y=0

0,1



IBM Labs in Haifa

27

Sound value substitutions

x=1 y=2

y=1

x=0

y=0

print(x,y)

x=1
y=2

y=1
print(x,y)

x=0 y=0

0,1



IBM Labs in Haifa

28

Sound value substitutions

x=1 y=2

y=1

x=0

y=0

print(x,y)

x=1
y=2

y=1
print(x,y)

x=0 y=0

0,1



IBM Labs in Haifa

29

Sound value substitutions

x=1 y=2

y=1

x=0

y=0

print(x,y)

x=1
y=2

y=1
print(x,y)

x=0 y=0

0,1



IBM Labs in Haifa

30

Visibility

³ A write event w is visible from a read event r if
² r does not precede w

x=1
y=2

y=1
print(x,y)

x=0 y=0



IBM Labs in Haifa

31

Visibility

³ A write event w is visible from a read event r if
² r does not precede w

x=1
y=2

y=1
print(x,y)

x=0 y=0



IBM Labs in Haifa

32

Visibility

³ A write event w is visible from a read event r if
² r does not precede w
²No write event to the same variable intervenes between w and r

x=1 y=2

y=1
print(x,y)

x=0 y=0



IBM Labs in Haifa

33

Generating sound value substitutions

³ When a thread event r requests value of a shared variable x
²Find all events w that write x and are visible from r

±There will always be such a w if the variables are initialized

²Select one such w to be the value producer
²Make all other w-s invisible from r

±How?



IBM Labs in Haifa

34

Hiding the write event

r

w wí

r

w wí

r

w wí



IBM Labs in Haifa

35

Hiding the write event

r

w wí

r

w wí

r

w wí

r

w wí



IBM Labs in Haifa

36

Conclusions

³ Algorithm works fine for programs composed solely of reads/writes
³ Compares favorably to other tools

²Especially for long-distance races

// busy wait
Ö

N=1

N=0

// busy wait
Ö

N=100

Ö

print N

²Normal execution: N=100
²Noise-maker: depends on 

heuristics and busy-wait
²Alternative pasts: 1…100 with 

equal probability



IBM Labs in Haifa

37

Conclusions

³ Algorithm works fine for programs composed solely of reads/writes
³ Compares favorably to other tools

²Especially for long-distance races
³ Challenges:

²Synchronized blocks
±The position of the block is determined before the block is executed
±Need static analysis to identify all reads/writes

²Time and space consumption
±Several ways to reduce the number of graphs and size of each graph
±Slicing could help
±Can just use insights to find new heuristics for noise-generation tools



IBM Labs in Haifa

38



IBM Labs in Haifa

39

There once was a man who said, “God
Must think it exceedingly odd

If He finds that this tree
Continues to be

When there’s no one about in the Quad.”

“Dear Sir:
Your astonishment’s odd: 

I am always about in the Quad
And that’s why the tree
Will continue to be,

Since observed by, 
Yours faithfully,

God.”


