
Memory Management
Optimizations

by Static Detection of Thread
Local Storage

Yair Yair Sade Sade –– TelTel--Aviv UniversityAviv University
Mooly SagivMooly Sagiv–– TelTel--Aviv UniversityAviv University

Ran Shaham Ran Shaham –– IBM Haifa LabsIBM Haifa Labs

What is Memory Management?

nn Responsible for program heap allocationsResponsible for program heap allocations
nn C Memory Management routinesC Memory Management routines
uumallocmalloc()()
uu free()free()
uu reallocrealloc()()
uu……

How is it implemented?

nn Global heapGlobal heap
nn mallocmalloc()() allocates memory from the heapallocates memory from the heap
nn free()free() returns the memory to the heapreturns the memory to the heap

Motivation

nn Memory management can become a Memory management can become a
bottleneck on multithreaded environmentsbottleneck on multithreaded environments

nn The global heap is shared among the The global heap is shared among the
program threadsprogram threads

nn To avoid data races, the global heap must be To avoid data races, the global heap must be
synchronizedsynchronized

Main Results
nn Improved runtime routines for specialized Improved runtime routines for specialized

memory management in multithreaded memory management in multithreaded
environmentsenvironments

nn A static analysis algorithm for automatic detection A static analysis algorithm for automatic detection
of specialized allocationsof specialized allocations

nn Implementation for full CImplementation for full C
nn Experimental results Experimental results

uu 1010--50% memory management improvements 50% memory management improvements
for standard memory management benchmarksfor standard memory management benchmarks

uu On large benchmarks static analysis is still On large benchmarks static analysis is still
impreciseimprecise

Motivating Example
void *g;

int f(void *);

int main() {

void *p;

…

p = malloc(..);

pthread_create(f, p);

}

int f(void *q) {

void *l;

free(q);

l = malloc(..);

g = malloc();

…

free(l);

}

Outline

nn Multithreaded MM Performance ProblemMultithreaded MM Performance Problem
nn Static Analysis Algorithm DescriptionStatic Analysis Algorithm Description
nn Correctness proofCorrectness proof
nn Experimental resultsExperimental results
nn Related workRelated work
nn ConclusionsConclusions

Performance Problem

nn Synchronization leads to contentionSynchronization leads to contention
uuThreads can be blockedThreads can be blocked
uuParallelism reducedParallelism reduced
uuContext switches occurContext switches occur

nn Synchronization primitives have overhead Synchronization primitives have overhead
even on singleeven on single--processor machines due to processor machines due to
system callssystem calls

Performance Problem (cont.)

nn On SMP machines the problem can become On SMP machines the problem can become
acuteacute
uuThreads running on different processors Threads running on different processors

call memory management routinescall memory management routines
uuProcessors are blocked waiting for heap Processors are blocked waiting for heap

locklock
uuSystem utilization dropsSystem utilization drops

Runtime Solutions

nn HighHigh--scaled specialized memory scaled specialized memory
management implementationsmanagement implementations
uuE. BergerE. Berger’’s Hoard s Hoard
uuH.H. BoehmBoehm’’ss GC based GC based

nn Reduce the problemReduce the problem

Programmable Solutions

nn Application specific Application specific allocatorsallocators
nn Use of thread local arenasUse of thread local arenas
nn DrawbacksDrawbacks
uuRequires special application designRequires special application design
uuVery hard to implement on large projectsVery hard to implement on large projects
uuExisting applicationsExisting applications

Our Solution

nn ““Thread local storageThread local storage””
uumemory only accessible by a single memory only accessible by a single

threadthread
nn Can be allocated on a separate heap Can be allocated on a separate heap
uu the thread heapthe thread heap

nn Almost no synchronizations on thread heapAlmost no synchronizations on thread heap

Our Solution (cont.)

nn Runtime allocator (Hoard based) that Runtime allocator (Hoard based) that
implements thread local storageimplements thread local storage
uu tlstls__mallocmalloc()()
uu tlstls_free()_free()

Our Solution (cont.)

nn Static analysis tool Static analysis tool
uuDetects thread local memory allocationsDetects thread local memory allocations
uumallocmalloc()() can be replaced tocan be replaced to tlstls__mallocmalloc()()
uu free()free() can be replaced tocan be replaced to tlstls_free()_free()

Our Solution (cont.)
void *g;

int f(void *);

int main() {

void *p;

…

p = malloc(..);

pthread_create(f,
p);

}

int f(void *q) {

void *l;

free(q);

l = malloc(..);

g = malloc();

…

free(l);

}

Replace with tls_malloc()

Replace with tls_free()

Our Solution (cont.)

nn Static analysis must be soundStatic analysis must be sound
uuTransformation preserves behaviorTransformation preserves behavior
uuToolTool’’s output must be thread local s output must be thread local

storagestorage
nn Static analysis gives an approximation Static analysis gives an approximation

resultsresults
uuFalse negatives can occur False negatives can occur
uuNot all thread local storage are detectedNot all thread local storage are detected

Location Creator

nn Associate a thread creator for each memory Associate a thread creator for each memory
locationlocation
uuStack location Stack location
uuHeap locationHeap location
uuGlobal locationGlobal location

Escaped Location

nn A memory location escapesA memory location escapes
uu Accessed by a different thread than the Accessed by a different thread than the

creating threadcreating thread
uuOnce memory location escaped, Once memory location escaped,

considered as escaped ever since considered as escaped ever since

Thread Local Location

nn NonNon--escaping location is called escaping location is called ““thread thread
local locationlocal location””

nn Thread local heap location is accessed only Thread local heap location is accessed only
by its creator threadby its creator thread

nn Can be allocated safely on Thread Local Can be allocated safely on Thread Local
Storage Storage
uuWe can use our We can use our tlstls__mallocmalloc functionfunction

Shared Locations

nn Shared memory locationShared memory location
uuA location that pointed by locations of A location that pointed by locations of

different creatorsdifferent creators
uuFor example For example –– global variables are shared global variables are shared

locationslocations

Shared Locations (cont.)

YesYesYesYesYesYes

NoNoNoNoYesYes

YesYesYesYesNoNo

YesYesNoNoNoNo

PossiblePossibleSharedSharedEscapedEscaped

Shared Locations (cont.)

nn A location can become shared on the A location can become shared on the
following conditionsfollowing conditions
uuThe location is global locationThe location is global location
uuThe location has been passed as a thread The location has been passed as a thread

parameter (by parameter (by pthreadpthread_create)_create)
uuThe location is pointed by shared locationThe location is pointed by shared location

Shard Locations (cont.)
void *g;

int f(void *);

int main() {

void *p;

…

p = malloc(..);

pthread_create(f, p);

}

int f(void *q) {

void *l;

free(q);

l = malloc(..);

g = malloc();

…

free(l);

}

p is escaped location

p,g are shared locations

Static Analysis Tool

nn Input for the algorithmInput for the algorithm
uuC ProgramC Program
uuPrePre--generatgedgeneratged pointer informationpointer information

nn OutputOutput
uuThread local locationsThread local locations

Limitations

nn ANSI C programs onlyANSI C programs only
nn pthreadspthreads threading modelthreading model

Points-to Graph

nn Describes the pointer relations between Describes the pointer relations between
abstract memory locationsabstract memory locations

nn Abstract location represents a set of real Abstract location represents a set of real
memory locationsmemory locations
uuHeapHeap
uuStackStack

Points-to Graph (cont.)

…

int i1,i2,i3;

int *p, *q;

p = &i1;

p = &i2;

q = &i3;

q = p;

…

p q

i1 i2 i3

Points-to Algorithms

nn Gives an approximation for the pointsGives an approximation for the points--to graphto graph
nn Two general algorithmsTwo general algorithms

uu Unification based (Unification based (SteensgaardSteensgaard et alet al.).)
uu Constraint based (Andersen Constraint based (Andersen et al.)et al.)

nn Both algorithms areBoth algorithms are
uu Flow insensitiveFlow insensitive
uu Context insensitiveContext insensitive

Points-to Algorithms (cont.)

p q

i1 i2 i3

Andersen

p q

i1, i2, i3

Steensgaard

…

int i1,i2,i3;

int *p, *q;

p = &i1;

p = &i2;

q = &i3;

q = p;

…

Static Algorithm

nn Requires preRequires pre--generated pointsgenerated points--to graphto graph
nn Context and flow insensitiveContext and flow insensitive
nn InterproceduralInterprocedural algorithm algorithm

Subset of C

nn Simple C statementsSimple C statements
uupthreadpthread_create(t,p)_create(t,p)
uu a = ba = b
uu a = &ba = &b
uu a = *ba = *b
uu*a = b*a = b
uu a = a = mallocmalloc()()

Static Algorithm Description

nn InitializationInitialization
1.1. Mark all abstract location as not sharedMark all abstract location as not shared
2.2. Mark global locations as sharedMark global locations as shared
3.3. Mark each abstract location which is Mark each abstract location which is

pointed by global as sharedpointed by global as shared

Initialization Phase
void *g;

int f(void *);

int main() {

void *p;

…

p = malloc(..);

pthread_create(f, p);

}

int f(void *q) {

void *l;

free(q);

l = malloc(..);

g = malloc();

…

free(l);

}

gg

Shared LocationsShared Locations

Mark and Replace Phases

nn Mark shared locations phaseMark shared locations phase
nn For each For each mallocmalloc//freefree callcall
uu If the location not marked as shared then If the location not marked as shared then

mallocmalloc//freefree can be replaced to TLScan be replaced to TLS

Mark Phase

nn Handling Handling pthreadpthread_create(f, b)_create(f, b)
uuMark each b as sharedMark each b as shared
uuMark each abstract location pointed by b Mark each abstract location pointed by b

as sharedas shared

Mark Phase (cont.)
void *g;

int f(void *);

int main() {

void *p;

…

p = malloc(..);

pthread_create(f, p);

}

int f(void *q) {

void *l;

free(q);

l = malloc(..);

g = malloc();

…

free(l);

}

gg

p,qp,q

Shared LocationsShared Locations

Mark Phase (cont.)

nn Handling a=bHandling a=b
uu If a is pointed by shared abstract location If a is pointed by shared abstract location

thenthen
ttMark each abstract location pointed by Mark each abstract location pointed by

b as sharedb as shared

Mark Phase (cont.)

nn Handling a=&bHandling a=&b
uu If a is pointed by shared abstract location If a is pointed by shared abstract location

thenthen
ttMark b as sharedMark b as shared
ttMark each abstract location pointed by Mark each abstract location pointed by

b as sharedb as shared

Mark Phase (cont.)

nn Handling a=*bHandling a=*b
uu If a is pointed by shared abstract location If a is pointed by shared abstract location

thenthen
ttMark each abstract location pointed by Mark each abstract location pointed by

*b as shared*b as shared

Mark Phase (cont.)

nn Handling *a=bHandling *a=b
uu If *a is pointed by shared abstract If *a is pointed by shared abstract

location thenlocation then
ttMark each abstract location pointed by Mark each abstract location pointed by

b as sharedb as shared

Replacement Phase
void *g;

int f(void *);

int main() {

void *p;

…

p = malloc(..);

pthread_create(f, p);

}

int f(void *q) {

void *l;

free(q);

l = malloc(..);

g = malloc();

…

free(l);

}

gg

p,qp,q

Shared LocationsShared Locations

Replace with tls_malloc()

Replace with tls_free()

Correctness Proof Sketch

nn Every location that the algorithm marks as Every location that the algorithm marks as
local never escapeslocal never escapes
uuWe show that ESC We show that ESC `̀ SHAREDSHARED
uuSeparation to concrete and abstract Separation to concrete and abstract

semanticssemantics

Correctness Proof Sketch (cont.)

nn For each statement show local correctness For each statement show local correctness
of our abstractionof our abstraction
uu ??(ABS_SHARED) (ABS_SHARED) rr SHAREDSHARED

nn Global correctness theorem (CC77)Global correctness theorem (CC77)

Complexity

nn PointsPoints--to analysisto analysis
uuBetween O(nBetween O(n³³) to linear time) to linear time
uuThe more complex the more preciseThe more complex the more precise
uuThere are many implementationsThere are many implementations

nn Our algorithmOur algorithm
uuLinear time complexityLinear time complexity

Static Algorithm Implementation

nn PointsPoints--to analysisto analysis
uuN. N. HeintzeHeintze scalable implementation to scalable implementation to

Andersen PointsAndersen Points--to analysisto analysis
nn C parser is based on CKIT of N.C parser is based on CKIT of N.HeintzeHeintze

Memory Management
Implementation
nn Based on Hoard allocatorBased on Hoard allocator
nn A special heap for each thread A special heap for each thread –– thread thread

local heaplocal heap
nn Actions on thread local heap are Actions on thread local heap are

synchronization freesynchronization free

Preliminary Results

nn We tested We tested mallocmalloc bencharmksbencharmks
nn On dual processor Linux On dual processor Linux
uuThreadTestThreadTest, , CacheStresssCacheStresss, ,

LinuxScalabilityLinuxScalability –– 20%20%
nn On 16 processors SGI On 16 processors SGI IrixIrix
uuThreadTestThreadTest, Cache, Cache--Trash Trash –– 50%50%

Related work

nn Escape Analysis (Escape Analysis (BogdaBogda,, RufRuf))
nn SteensgaardSteensgaard GC optimizationsGC optimizations
nn Analysis of multithreaded programs Analysis of multithreaded programs

((RinardRinard))
nn PointsPoints--to Analysis (Andersen, to Analysis (Andersen, SteensgaardSteensgaard, ,

ManuvirManuvir, , HeintzeHeintze, , RinardRinard))
nn Multithreaded Memory Management Multithreaded Memory Management

(Zorn, Boehm, Berger)(Zorn, Boehm, Berger)

Conclusions

nn ContributionsContributions
uuNew escape analysis algorithm for C New escape analysis algorithm for C

programsprograms
uuStatic detection of thread local storageStatic detection of thread local storage
uuHigh performance allocator for thread High performance allocator for thread

local storagelocal storage

Conclusions (cont.)

nn Our research statusOur research status
uu Improve precision of the analysisImprove precision of the analysis
uuFind practical benchmarksFind practical benchmarks

The End

yairsyairs@cyber@cyber--ark.comark.com

