Memory Management
Optimizations
by Static Detection of Thread
Local Storage

Yar Sade — Tel-Aviv University
Mooly Sagiv— Td-Aviv University
Ran Shaham — IBM Haifa Lalbs

What I1s Memory Management?

m Responsible for program heap allocations
= C Memory Management routines
+ malloc()

o freg()
o+ realoc()

$...

How Is It Implemented?

= Global heap
= mallog() allocates memory from the heap
= free() returns the memory to the heap

Motivation

= Memory management can become a
bottleneck on multithreaded environments

® Theglobal heap Is shared among the
program threads

= To avoid data races, the global heap must be
synchronized

VETRERESTIES

m Improved runtime routines for specialized
memory management in multithreaded
environments

m A static analysis algorithm for automatic detection
of specialized allocations

= Implementation for full C
m Experimental results

+ 10-50% memory management improvements
for standard memory management benchmarks

+ On large benchmarks static analysis is still
Imprecise

Motivating Example

void *g;
int f(void *);
int main() {

void *p;

p = maloc(..);
pthread_create(f, p);
}
int f(void *q) {
void *I;
free(q);
| = maloc(..);

g= malloc();

free(l):

Qutline

= Multithreaded MM Performance Problem
m Static Analysis Algorithm Description

= Correctness proof

= Experimental results

= Related work

= Conclusions

Performance Problem

m Synchronization |eads to contention
+ Threads can be blocked
¢ Parallelism reduced
+ Context switches occur

= Synchronization primitives have overhead
even on single-processor machines due to
system calls

Performance Problem (cont.)

m On SMP machines the problem can become
acute

¢ Threads running on different processors
call memory management routines

¢ Processors are blocked waiting for heap
lock

¢ System utilization drops

Runtime Solutions

m High-scaled specialized memory
management implementations

¢ E. Berger'si

oard

¢ H. Boehm's GC based
= Reduce the problem

Programmabl e Solutions

m Application specific allocators

= Use of thread local arenas

= Drawbacks
+ Requires special application design
+ Very hard to implement on large projects
¢ Existing applications

Our Solution

® “Thread local storage”

+ memory only accessible by asingle
thread

= Can be allocated on a separate heap
+ the thread heap
= Almost no synchronizations on thread heap

Our Solution (cont.)

= Runtime allocator (Hoard based) that
Implements thread local storage

o tls malloc()

o tls freg()

Our Solution (cont.)

m Static analysis tool
¢ Detects thread local memory allocations
+ mallocg() can be replaced to tls malloc()
¢ freg() can be replaced to tls freg()

Our Solution (cont.)

void *g;
int f(void *);
int main() {

void *p;

p= maloc(..);

pthread create(f,
P);

}

int f(void *q) {
void *I;
free(a);

l=mdloc(.); =—== Replacewith tls malloc()
g = malloc();

ey ~ —<—— Replacewithtls free()

Our Solution (cont.)

m Static analysis must be sound
¢ Transformation preserves behavior

¢ Tool’ s output must be thread local
storage

= Static analysis gives an approximation
results

+ False negatives can occur
+ Not all thread local storage are detected

|_ocation Creator

m Associate athread creator for each memory
location

+» Stack location
+ Heap location
+ Global location

Escaped L ocation

= A memory location escapes

+ Accessed by a different thread than the
creating thread

+ Once memory |location escaped,
considered as escaped ever since

Thread Local Location

= Non-escaping location is called “thread
local |ocation”

m Thread local heap location is accessed only
by Its creator thread

= Can be allocated safely on Thread L ocal
Storage

+ We can use our tIs malloc function

Shared L ocations

m Shared memory location

+ A location that pointed by locations of
different creators

¢ For example — global variables are shared
locations

Shared L ocations (cont.)

Escaped

Shar ed

Possible

NO

NO

Y es

Ne

Y Ees

Y Ees

Y es

No

No

Y es

Y es

Y es

Shared L ocations (cont.)

m A location can become shared on the

following conditions
¢ Thelocation is global
+ The location has been

ocation

nassed as a thread

parameter (by pthread create)
+ The location Is pointed by shared location

Shard L ocations (cont.)

void *g;
int f(void *);
int main() { P Is escaped location
void *p;
p,g are shared |locations
p= maloc(..);
pthread create(f, p);
}
int f(void *q) {
void *|;
free();
| = malloc(..);

g= malloc();

free(l):

Static Analysis Tool

= [nput for the algorithm

¢ C Program

¢ Pre-generatged pointer information
= Output

¢ Thread local locations

L imitations

m ANSI C programs only
= pthreads threading model

Points-to Graph

m Describes the pointer relations between
abstract memory locations

m Abstract location represents a set of real
memory locations

Points-to Graph (cont.)

int 11,i2,13;
int *p, *q;

p:&il; ——

= & 2; —

p
q=8&3 —=
q

= P —

Points-to Algorithms

m Glves an approximation for the points-to graph
= Two general algorithms

+ Unification based (Steensgaard et al .)

+ Constraint based (Andersen et al .)
= Both algorithms are

+ Flow insensitive

+ Context insensitive

Points-to Algorithms (cont.)

int 11,12,13;
int *p, *q;
p = &1,

= & 2;

p
q = & 3;
q = p;

\/

11,12,13

Andersen

Steensgaard

Static Algorithm

m Requires pre-generated points-to graph
= Context and flow insensitive
= [nterprocedural algorithm

Subset of C

m Smple C statements
¢ pthread create(t,p)
ea=>b
ea=&Db
ea="%*D
e*a=>b
¢ a= malloc()

Static Algorithm Description

m |nitidization
1. Mark all abstract location as not shared
> Mark global locations as shared

s Mark each abstract location which is
pointed by global as shared

|nitialization Phase

void *g;
int f(void *);
int main() {

void *p;

p= maloc(..);

pthread create(f, p);
}
int f(void *q) {

void *I;

free(a);

| = maloc(..);

g= malloc();

free(l):
}

Mark and Replace Phases

= Mark snared locations phase
= For each malloc/free call

¢ If the location not marked as shared then
malloc/free can bereplaced to TLS

Mark Phase

= Handling pthread create(f, b)
+ Mark each b as shared

+ Mark each abstract location pointed by b
as shared

Mark Phase (cont.)

void *g;
int f(void *);
int main() {

void *p;

p= maloc(..);
pthread_create(f, p);

}
int f(void *q) {

void *I;
free(q);
| = malloc(..);
g= malloc();

free(l):

Mark Phase (cont.)

= Handling a=b
¢ If ais pointed by shared abstract |ocation
then

+ Mark each abstract |ocation pointed by
b as shared

Mark Phase (cont.)

= Handling a=&b

¢ If alis pointed by shared abstract location
then

s Mark b as shared

+» Mark each abstract location pointed by
b as shared

Mark Phase (cont.)

m Handling a=*b
¢ If ais pointed by shared abstract |ocation
then

+ Mark each abstract |ocation pointed by
* as shared

Mark Phase (cont.)

= Handling *a=b
¢ If *ais pointed by shared abstract
location then

+ Mark each abstract |ocation pointed by
b as shared

Replacement Phase

void *g;
int f(void *);
int main() {

void *p;

p= maloc(..);

pthread_create(f, p);

}

int f(void *q) {
void *;
free(a);
| = maloc(..);
g= malloc();

free(l);

<——— Replacewith tls malloc()

<—— Replacewith tls freg()

Correctness Proof Sketch

= Every location that the algorithm marks as
local never escapes

» We show that ESC < SHARED

¢ Separation to concrete and abstract
semantics

Correctness Proof Sketch (cont.)

m For each statement show local correctness
of our abstraction

+ (ABS SHARED) = SHARED
= Global correctness theorem (CC77)

Complexity

= Points-to analysis
¢ Between O(nd) to linear time
+ The more complex the more precise
¢ There are many Implementations
= Our algorithm
¢ Linear time complexity

Static Algorithm I mplementation

= Points-to analysis

+ N. Haintze scalable implementation to
Andersen Points-to analysis

m C parser isbased on CKIT of N.Heintze

Memory Management
|mplementation

m Based on Hoard allocator
= A special heap for each thread — thread

local heap

= Actions on thread local heap are
synchronization free

Preliminary Results

m We tested malloc bencharmks

= On dual processor Linux
¢ ThreadTest, CacheStresss,
LinuxScalability — 20%
m On 16 processors SGI Irix
¢ ThreadTest, Cache-Trash — 50%

Related work

= Escape Analysis (Bogda, Ruf)

m Steensgaard GC optimizations

= Analysis of multithreaded programs
(Rinard)

= Points-to Analysis (Andersen, Steensgaard,
Manuvir, Heintze, Rinard)

= Multithreaded Memory Management
(Zorn, Boehm, Berger)

Conclusions

m Contributions

+ New escape analysis algorithm for C
programs

¢ Static detection of thread local storage

+ High performance allocator for thread
local storage

Conclusions (cont.)

m Our research status
+ Improve precision of the analysis
¢ Find practical benchmarks

The End

yalrs@cyber-ark.com

