
Data Cache Design and 
Evaluation for SMT Processors

Ron Y. Pinter
Haggai Yedidya

Dept. of Computer Science
Technion

November 11, 2003



What is SMT?

• SMT = Simultaneous Multi Threading

• (Relatively) simple and natural enhancement to super-
scalar processors

• Several HW threads issue instructions to the (modified) 
super-scalar pipeline

• Commercially available: Intel’s Xeon processor, with 
HyperThreading Technology (2 threads, 5% area cost)



SMT – Why?

• Increase throughput by exploiting thread level parallelism 
(TLP) as well as ILP

– Increase the sustained utilization of existing 
processor resources.

– Enable the addition and use of extra processor 
resources (previously limited by ILP)



SMT – Memory Problem
• Memory access is as slow as before:

– 1st level cache performance remain a key factor
– Small code sections can access large amounts of data 

(loops, fit in instruction cache)
– Data access is a bigger problem than instruction fetch

Ø The bottle gets bigger but the bottleneck does not

• Possible solution: larger caches
– Larger caches are slower and/or consume more energy

• Another approach: better suited behavior
– Caching approach originally based on access locality of 

serial processors



Research Goals
• What are the characteristics of a good data cache for SMT 

processors?
– Use cache building blocks and sizes common to 

present day data caches
– Amenable to high performance implementation
– Measure best configurations and tradeoff relationships

• Does the non-serial case exhibit data access locality? 
– If not:

• How much disruption does the new access pattern 
introduce?

• How can it be dealt with?



• Empirical evaluation, using:
– A simulator

• Detailed micro-architectural simulator
• Only 1st level data cache changed in processor model

– Several test workloads
– Key factors of the cache configuration, modeled into the 

simulator:

Methodological Framework

Structure

Total size

Line size

Level of associativity

Logic

Hash Function

Replacement Policy



Workloads
• Multi-threaded load

– Single program and memory space.
– Multiple threads run to complete program (parameter)

• Kernel: implementation of a single algorithm kernel
• Application: real application, heterogeneous behavior

• Multi-process load
– Each thread is an independent serial program
– Separate memory spaces
– Each run is a recipe of several threads

• Parallelism
– Number of threads represents different work profile
– Each workload type is tested with different levels of 

parallelism



Implementation Environment
• Simulator

– SMTSIM, written by Dean Tullsen (Univ. of 
Washington, now at UCSD)

– DEC Alpha based instruction set
– User Level Simulator
– Extended and modified for our purposes



Multi-Threaded Load

• Parts of the Stanford SPLASH-II suite.
– Kernels: Cholesky, FFT, Radix
– Application: Raytrace

• Available as source files
– Extensive adaptation required

• Problem sizes and measuring run times determined for 
simulations

• 1,2,4,8 threads were used, using same problem sizes



Multi-Process Load

• Parts of the SPEC CPU2000 suite
– Benchmarks: Equake, Crafty, Mgrid, Gcc, Gzip
– 12 overall running configurations

• Downloaded from Dean Tullsen’s SMTSIM homepage
– Ready to run- no adaptation needed

• Commonly accepted benchmarks
– Problem sizes and measuring run times predetermined

• Recipes conjured for 2,4,8 threads in 2 combinations
– All benchmarks run as single thread for reference



Cache Key Factors: Structure
• Cache structure:

– Size/line size: 
• 16KB, 64B/line
• 32KB, 64B/line
• 16KB, 32B/line

• Helps differentiating the effects of size, line size and 
total number of lines

– Level of associativity: 1,2,4,8,16,32,64
• Enables measuring the tradeoff between number of 

associative sets and their size



• Cache logic:

– Hash functions: 
• Modulo
• Xor

– Replacement policies: 
• LRU
• Random: each associative set has a wrap-around 

counter, incremented on every access (R/W).

Cache Key Factors: Logic

idx bits offs bits

idx bits offs bitsidx bits

mem space ID

Address

Address
index

index



Results: Multi-Process, 8 Threads

• Multi-process load

• Structure: 16Kb, 
64B/line

• triangles: color=hash

direction=rep.

• Hash func. important for low assoc.

• Rep. policy important for high assoc.

• Fast cross-over (4-way)

• LRU better than random

• Monotonic improvement with assoc. 

Ø Classic temporal locality exhibited

• Saturates fast: Small overall change

• Xor helps saturates faster



Multi-Process (cont’d)

• Each structure 
demonstrates previous 
observations.

• Line size makes a large 
impact

• Overall size has 
secondary effect

Ø Spatial locality exhibited 

• Multiple Structures: 

• Color coded

• Effect of structure 
shown



Multi-Threaded Load: Raytrace

• Multi-threaded 
application

• 8 Threads

• Fixed structure

• Better performance than multi-process

• Hash important for low, interim assoc.

• Xor greatly improves at low assoc. 

• Rep. important for high assoc.

• LRU better than random

• Mostly monotonic

• Decrease for xor at high assoc.

Ø Temporal locality largely exhibited 

ØAnother factor in play



Raytrace: Comparing Structure

• Each structure demonstrates previous observations.

• Size has a primary impact

• Logic exhibits secondary effect

• Line size has a minor effect

Ø No evidence for spatial locality



Multi-Threaded Kernel

• Replacement policy has no impact

Ø No temporal locality

• For xor lines: decrease at high assoc.

• Collapse to mod behavior

• Line size important for xor, size for mod

• Sharp increase for mod, 16KB, 8-way

• Multi-threaded kernel - FFT

• All configurations shown



Conclusions
• Multi-process loads exhibit classic access locality

• Multi-threaded loads exhibit “chaotic” factor

• Small impact for raytrace

• Only factor for kernels

• Best dealt with using xor-hash for uniform spread
of accesses between sets

• Higher associativity levels are not necessarily better

• Xor hash enables fast performance increase

• A 4 way set associative cache yields good results, 
negligible increase (if at all) beyond 8 way



Acknowledgements

• Avi Mendelson, Intel and the Technion

• Dean M. Tullsen, UCSD

• Distributed Systems Laboratory, Technion



The End

Questions?


