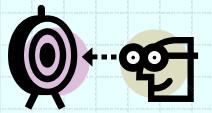
Association Rule Mining in Peer-to-Peer Systems

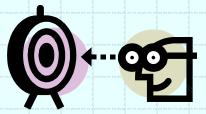
Assaf Schuster
Joint work with Ran Wolff
ICDM 2003

System-Centric View of P2P

- ◆Internet scale system
- Failure rate
 - high as it has ever been
- Communication
 - sparse and slow, especially upstream
- Supported features
 - Local failure detection
 - Overlay network maintenance
 - Routing



Data-Centric View of P2P



- Horizontally distributed database
- ◆Impossible to collect upstream comm.
- Data changes rapidly
 - Partitions disappear and new ones are added
 - Data is modified faster than it can be propagated

Data-Mining a P2P System

- Impossible to collect the data
 - Distributed algorithms
- Ever changing data and system
 - Incremental algorithms
 - Ad hoc, anytime results
- Internet scale
 - No global operators allowed

Why Mine a P2P Database?

- Find out that eDonkey users who read anti-terrorism texts also download stock manipulation software!
- Find out that Kazaa Matrix fans also like Radiohead music!

Kazaa

- 60M users
- 45M files downloaded/month
- 5M simultaneously connected users
- 900M shared files
- Downloaded 229M times

Large-Scale Distributed Example: Parallelization

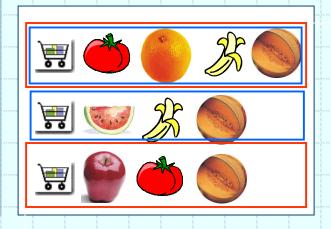
- ◆Technion has ~10,000 PCs
 - Avg. Memory 100MB
 - Connected via 100Mb/Sec Ethernet
- To mine a 1TB database
 - Read it once and pour it into the memory of 10,000 PCs (disk IO bounded operation)
 - Build your decision tree / association rules
- The alternative is out-of-core mining

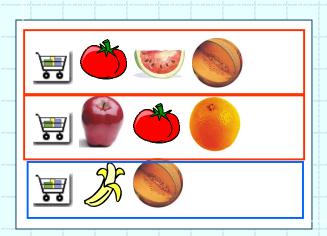
LSD Example: Next-Gen Monitoring

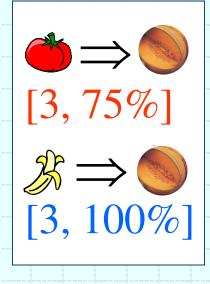
- In the Concurrent & Distributed Programming course students implement a parallel program using MPI and run it on a Condor pool
- It took us about a week to find out the following pattern:
 - an MPI process accesses a dll
 - it fails to find it
 - exits abnormally
 - condor assumes the job was evicted and reruns the whole MPI program
- Distributed association rule mining would have found this pattern immediately
 IBM Storage and Systems

seminar, 24 Nov 2003

Association Rule Mining







MinFreq = 3 MinConf = 70%

ARM Examples

- Diapers Beer
- Diabetics + Heart problems
- The Remedia case

BUT...PRIVACY!

Our Work

- Association rule mining algorithm for peer-to-peer systems
 - ★ Local and therefore infinitely scalable
 - ☆ Asynchronous and therefore fast
 - → Dynamic and therefore robust
 - ☆ Accurate not approximated
 - ☆ Anytime you get early results fast

Related Work

- "Estimating aggregates on a peer-to-peer network".
 M. Bawa, H. Garcia-Molina, A. Gionis, and R.
 Motwani. TR-2003
- "Gossip-Based Computation of Aggregate
 Information", D. Kempe, A. Dobra, and J. Gehrke.
 PODC-2003
- "Communication-efficient Distributed Mining of Association Rules". A. Schuster, R. Wolff. SIGMOD-2001

Other related work

- Assumes uniform sources
- Data independent
- Estimated
- Global
- Assumes static data

NON SCALABLE!!!

Distributed ARM algorithm

- 1. Reducible to a series of majority votes among transactions
 - Itemset X:
 - Vote 1 if they contain the itemset, 0 otherwise
 - MinFreq majority required
 - Rule X⇒Y:
 - Vote 1 if they contain X and Y, 0 if they contain only left-hand side, the rest abstain.
 - MinConf majority required

Distributed ARM algorithm

- 2. Majority vote can be calculated by a local algorithm
 - Local algorithms: a peer consults few nearby neighbors to calculate result
- 3. Candidate generation generalized for on-the-fly rule generation

Solution to Traditional ARM

 $Let \ 0 < MinFreq \le 1, 0 \le MinConf \le 1$

$$R[DB] = \begin{cases} X \cap Y = \phi \\ X \Rightarrow Y : Freq(X \cup Y, DB) \ge MinFreq \\ Freq(X \cup Y, DB) \ge MinConf \cdot Freq(X, DB) \end{cases}$$

Difference in P2P ARM

$$DB \to DB_t^u : \forall u, t$$

$$R[DB_t] = R\left[\bigcup_{v} DB_t^v\right]$$

Solution for P2P-ARM

- No termination
- Anytime solution
 - The solution of peer u at time t: $\tilde{R}_u[DB_t]$
 - The global solution : $R[DB_t] = R \left[\bigcup_{v} DB_t^v \right]$
- Quality judged by recall and precision

Recall=
$$\frac{\left|\widetilde{R}_{u}[DB_{t}] \cap R[DB_{t}]\right|}{\left|R[DB_{t}]\right|}$$

Precision =
$$\frac{\left|\widetilde{R}_{u}[DB_{t}] \cap R[DB_{t}]\right|}{\left|\widetilde{R}_{u}[DB_{t}]\right|}$$

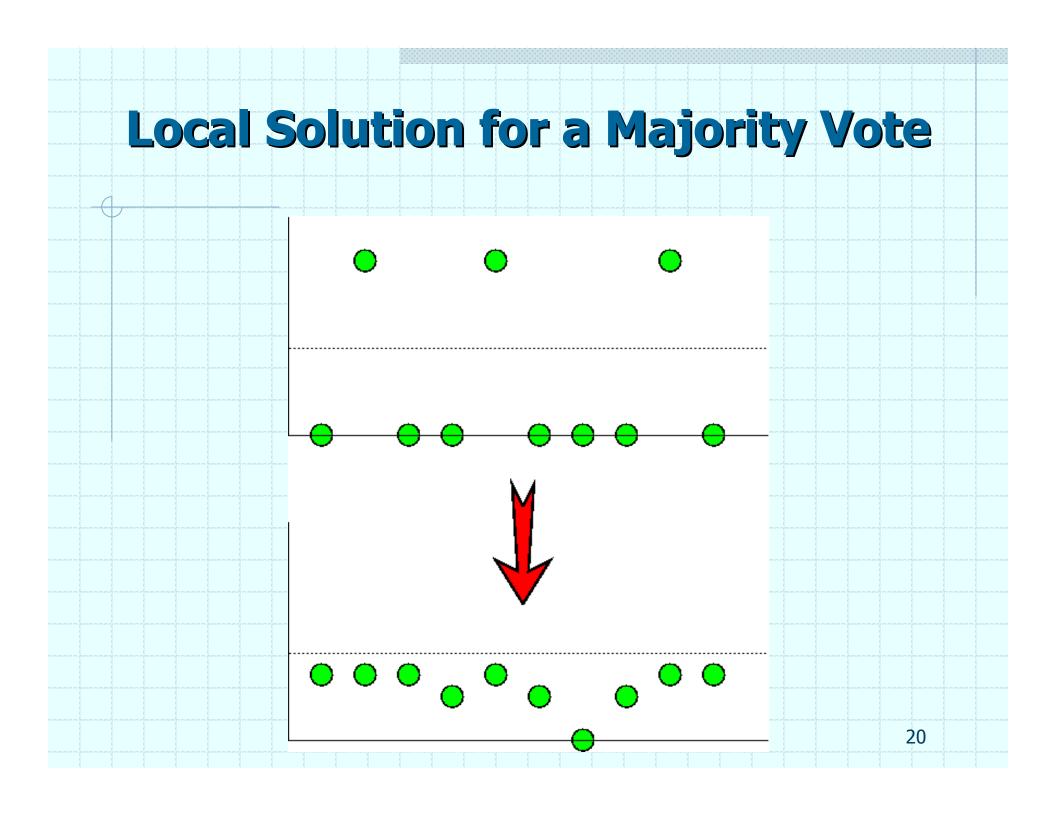
Local Majority Voting algorithm

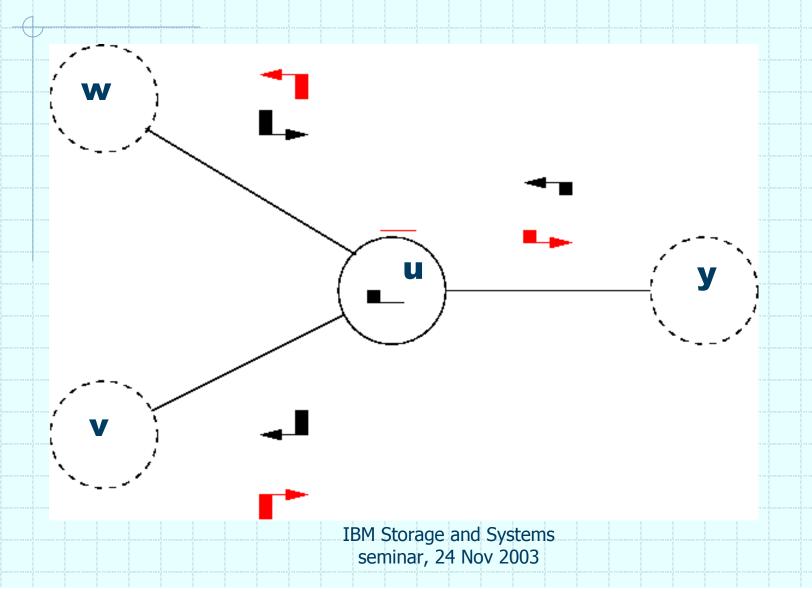
- Messages are pairs < s, c>
 - Number and sum of the bits
- **Each** peer u stores the last message it sent to and received from every neighbor $v \langle s^{uv}, c^{uv} \rangle$ and $\langle s^{vu}, c^{vu} \rangle$

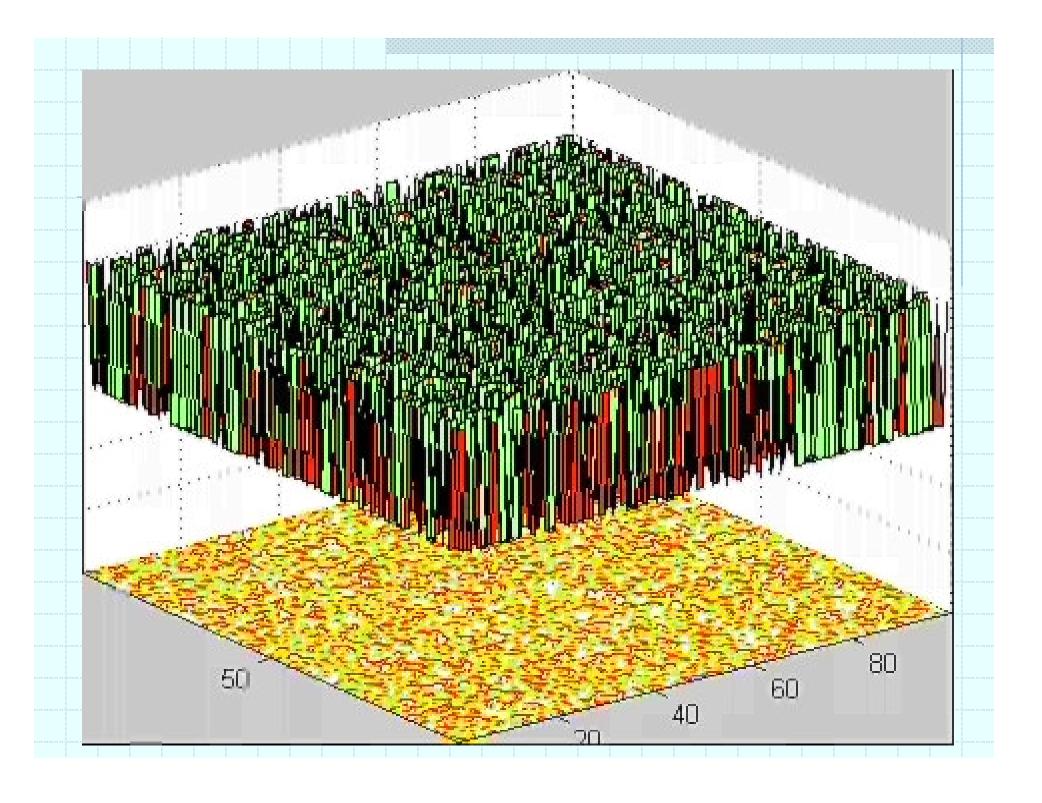
$$\Delta^{uv} = (s^{vu} + s^{uv}) - \lambda(c^{vu} + c^{uv})$$
$$\Delta^{u} = \sum_{v \in N_t^u} (s^{vu} - \lambda c^{vu})$$

Local Majority Voting algorithm

- Δ^u peer u evidence for the number of excess 1 votes
- $\bullet \Delta^{uv}$ peers u and v agreement on the evidence for the number of excess 1 votes
- Main idea:
 - Have each peer agree with its neighbors on $Sign(\Delta^u)$
 - Make sure no peer misleads its neighbors
 - $\Delta^{uv} \ge 0$ and $\Delta^{uv} > \Delta^{u}_{\text{IBM Storage and Systems}} v < 0$ and $\Delta^{uv} < \Delta^{u}_{\text{seminar, 24 Nov 2003}}$







Candidate Rule Generation

Initial itemsets

For each $i \in I$

$$C \leftarrow \langle \phi \Rightarrow \{i\}, MinFreq \rangle$$

Initial rules

For each
$$\langle \phi \Rightarrow X, MinFreq \rangle \in \widetilde{R}_u[DB_t]$$

$$C \leftarrow \{\langle X \setminus \{i\} \Rightarrow \{i\}, MinConf \rangle \mid i \in X\}$$

Candidate Rule Generation

AprioriGen

For each $X \cup \{i_1\}, X \cup \{i_2\} \in L$ – Set of frequent itemsets $Verify \ \forall_{i_3 \in X} \ X \cup \{i_1, i_2\} \setminus \{i_3\} \in L$ $C \leftarrow X \cup \{i_1, i_2\}$

Generalized AprioriGen

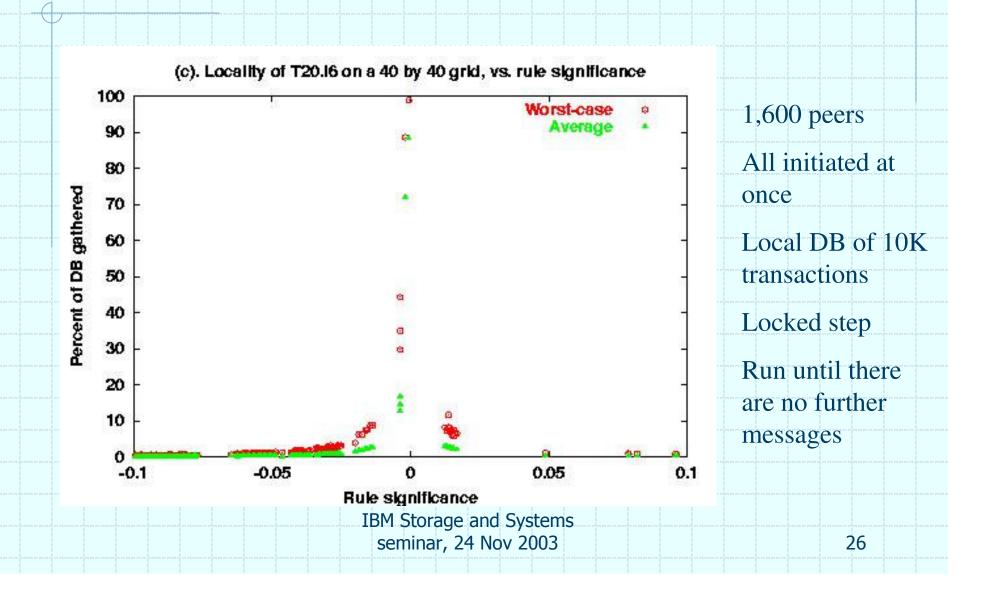
For each $\langle X \Rightarrow Y \cup \{i_1\}, \lambda \rangle, \langle X \Rightarrow Y \cup \{i_2\}, \lambda \rangle \in \widetilde{R}_u[DB_t]$ Verify $\forall_{i_3 \in Y} \langle X \Rightarrow Y \cup \{i_1, i_2\} \setminus \{i_3\}, \lambda \rangle \in \widetilde{R}_u[DB_t]$ $C \leftarrow \langle X \Rightarrow Y \cup \{i_1, i_2\}, \lambda \rangle$ IBM Storage and Systems

seminar, 24 Nov 2003

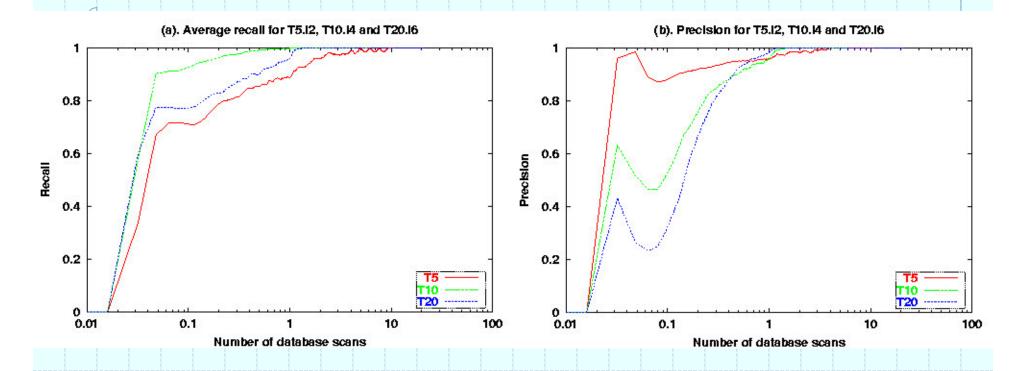
Summary

- Each peer
 - Creates initial itemsets
 - Repeats forever
 - Count the local support of each candidate
 - Participate in a majority vote for each candidate
 - Update the local solution
 - Create new candidates based on the local solution

Locality

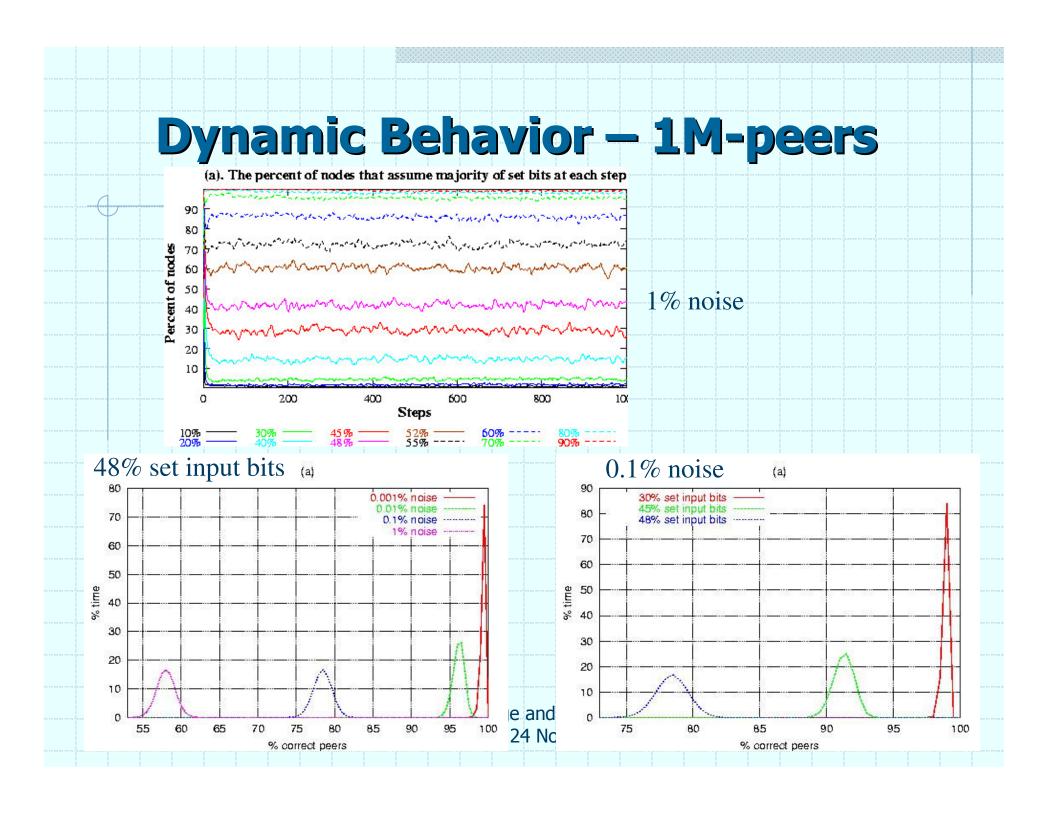


Convergence



By the time the database is scanned once, in parallel:

- the average node has discovered 95% of the rules;
- has less than 10% false rules.



Thank you

Relation to Other Domains

- Local algorithms the persistent bitproblem
- Distributed system diffusive loadbalancing

Future work

- Privacy preserving
- General communication graphs
- Other data mining problems