Some Thoughts on Kernel PCA and LDA

Ramesh A. Gopinath
IBM T.J. Watson Research Center
email: rameshg@us.ibm.com

April, 2000

Abstract
This note describes a viewpoint for Kernel PCA and LDA.

1 Preliminaries

Given labeled data \(\{(x_i, y_i)\}, \ i \in \{1, \ldots, l\}, x_i \in \mathbb{R}^n, y_i \in \{0,1,\ldots,J-1\} \), let \(X = (x_1, x_2, \ldots, x_l) \) be the \(n \times l \) data matrix. Let \(e_j \in \mathbb{R}^l \) be the indicator vector for class \(j \) and let \(e = \sum_j e_j \). Each class has \(l_j = e_j' e_j \) samples and \(P_j = \frac{1}{l_j} e_j e_j' \) is the orthogonal projection along the mean of class \(j \). The overall mean and class means are

\[\mu = \frac{1}{l} X e; \quad \mu_j = \frac{1}{l_j} X e_j. \]

(1)

Let \(T, W \) and \(B \) be respectively the total, within-class and between-class covariances respectively:

\[lT = [\sum_i x_i x_i'] - l \mu \mu' = XX' - \frac{1}{l} X e e' X' = X(I - P)X' = (XQ_T)(XQ_T)'; \]

(2)

\[lW = [\sum_i x_i x_i'] - \sum_j l_j \mu_j \mu_j' = X(I - \sum_j P_j)X' = XQ_W X' = (XQ_W)(XQ_W)'; \]

(3)

\[lB = I(l - W) = X(\sum_j P_j - P)X' = XQ_B X' = (XQ_B)(XQ_B)', \]

(4)

\(Q_T, Q_W \) and \(Q_B \) are appropriate orthogonal projections - recall for any orthogonal projection \(R \), that \(R^2 = R = R' \). One can also interpret \(lQ_T, lQ_W \) and \(lQ_B \) as the total, within and between-class covariances of the \(l \times l \) “identity” data matrix \(I \); indeed \(Q_T = Q_W + Q_B \). Moreover, Eqn. 2-Eqn. 4 then can be interpreted as the same matrices after the data \(I \) has been linearly transformed by \(X \), i.e., \(I \mapsto XI = X \).

Since \(I = (I - \sum_j P_j) + (\sum_j P_j - P) + P = Q_W + Q_B + P \) with \(Q_W, Q_B \) and \(P \) mutually orthogonal projections, \(\mathcal{R}^l = Q_W \mathcal{R}^l \oplus Q_B \mathcal{R}^l \oplus P \mathcal{R}^l \) is a direct decomposition of \(\mathcal{R}^l \) from which the eigenspaces of \(Q_B, Q_W \) and \(Q_T \) are trivially inferred. For example, \(Q_T \) has one eigenvector \(\frac{1}{\|e\|} e \) with eigenvalue 0, and any vector on the orthogonal complement is an eigenvector with eigenvalue 1; recall projections have eigenvalues in \(\{0,1\} \).

Consider the following generalized eigenvalue problem: \(Q_T u = \lambda Q_W u \). By direct verification it is clear that the generalized eigenspaces are \(Q_W \mathcal{R}^l, Q_B \mathcal{R}^l \) and \(P \mathcal{R}^l \).
1. Any vector \(u \in Q_W R^l \) is a generalized eigenvector with eigenvalue \(1 \) - clear since \(Q_T u = u, Q_W u = u \).

2. Any vector \(u \in Q_B R^l \) is a generalized eigenvector with \(\lambda = \infty \) - clear since \(Q_W u = 0 \times u \) and \(Q_T u = 1 \times u \).

3. \(u = \frac{1}{\| u \|} e \) is a generalized eigenvector and \(\lambda \) is indeterminate \((0/0) \) - clear since \(Q_T u = 0 \times u \) and \(Q_W u = 0 \times u \).

If one is interested in eigenspace corresponding to large values of \(\lambda \) then one has to focus on \(Q_B R^l \).

For an arbitrary matrix \(A \), let \(A = U D V' \) be the SVD of \(A - U, V \) orthogonal and \(D \) diagonal. Columns of \(V \) are the eigenvectors of \(A^T A \) (with eigenvalues \(diag(DD') \)) and columns of \(U \) are the eigenvectors of \(A A^T \) (with eigenvalues \(diag(DD') \)). Furthermore, \(AV = UD \) (i.e., columns of \(U \) - with non-zero singular values - are in the column space of \(A \) with coefficients the corresponding column of \(V \)) and \(A' U = V D' \) (i.e., columns of \(V \) - with non-zero singular values - are in the rowspace of \(U \) with coefficients the corresponding column of \(U \)). Assuming \(rank(A) = r \), SVD can be interpreted as an expansion of \(A \)

\[
A = \sum_{i=1}^{r} d_i u_i v_i'.
\]

(5)

2 PCA

PCA directions of the data correspond to eigenvectors of the total covariance. Let \(XQ_T = UDV' \) be the SVD of \(XQ_T \). Then from Eqn. 2 \(IT = UDD'U' \) and therefore the PCA directions are the columns \(U \) with eigenvalues \(diag(DD') \). The columns of \(V \) are the eigenvectors of the Gram-matrix of \(XQ_T \) i.e., \(Q_T X' XQ_T \). Recall that \(XQ_T \) is an \(n \times l \) matrix. If \(n \leq l \) - which is typically the case - one obtains \(U \) directly. If \(n > l \) it may be more convenient to solve for \(V \) and obtain scaled columns of \(U \) as an expansion in the basis \(XQ_T \) with coefficients \(V \) - i.e., \(XQ_T V = UD \). In any case, state-of-the-art numerical algorithms for SVD can be used to compute \(U \) and/or \(V \). It is typically more stable to compute SVD of \(XQ_T \) instead of computing the eigenvectors of \(XQ_T X' \) because \(c(XQ_T X') = c^2(XQ_T) \), where \(c(A) \) denotes the condition number of matrix \(A \). Note that \(rank(XQ_T) \leq rank(X) = r \leq \min(n,l) \), where \(r \) is the number of linearly independent data vectors. In typical applications \(l >> n \) and \(r = n \) and all the eigen-values are non-zero. However, if \(l = n \) and \(r = n \), then because \(Q_T \) is a projection, \(rank(XQ_T X') = n - 1 \) and there is an eigenvector with eigenvalue \(0 \).

3 Kernel PCA

Let \(k(x, y) \) be a reproducing kernel over \(\mathcal{R}^n \times \mathcal{R}^n \). That is

\[
\int k(x, z)k(y, z)dz = k(x, y).
\]

(6)

Consider the mapping \(x_i \mapsto k(x_i, x) \) taking \(\mathcal{R}^n \) to \(\mathcal{R}^n \). Let \(X_k \) denote transformed (or feature-space) data matrix - \(X_k = (k(x_1, x), \ldots, k(x_l, x)) \). In general \(X_k \) will not be centered, even if \(X \) is. Eqn. 6 shows how the standard inner product \((L^2) \) in feature space
between data-vectors is determined exclusively by the kernel. Formally the total covariance in feature-space is \(X_k Q_T X'_k \) and therefore the PCA directions in feature-space are the eigenvectors of \(X_k Q_T X'_k \).

\[
\ell T(x, y) = \sum_i k(x_i, x)k(x_i, y) - l\mu(x)\mu(y) = X_k Q_T X'_k = (X_k Q_T)(X_k Q_T)'.
\]

(7)

Note that \(T(x, y) \) is a finite-rank operator (\(rank(T) \leq l \)) and therefore has an expansion in terms of normalized eigenfunctions:

\[
T(x, y) = \sum_{i=1}^l d_i^2 u_i(x)u_i(y),
\]

Indeed if \(rank(X_k) = r \) (i.e., there are \(r \) linearly independent data vectors in feature space) then one can consider the following “SVD” of \(X_k Q_T \):

\[
X_k Q_T = UDV' = \sum_{i=1}^{r \leq l} d_i u_i(x)v_i',
\]

where \(u_i \in \mathcal{R}^\mathcal{R}^n, v_i \in \mathcal{R}^n, d_i \in \mathcal{R}^+, .\) As we have seen \(U \) is the set of eigenvectors of \(X_k Q_T X'_k \) and \(V \) is the matrix of eigenvectors of the Gram matrix of \(X_k Q_T \), i.e., \(Q_T X'_k X_k Q_T \).

\[
Q_T X'_k X_k Q_T = Q_T \left(\int k(x_i, x)k(x_j, x)dx \right) Q_T = Q_T \left(k(x_i, x_j) \right) Q_T = Q_T K Q_T; Q_T K Q_T v_i = d_i^2 v_i.
\]

For Kernel PCA since the Gram matrix is finite dimensional it is more convenient to compute \(V \) (eigenvectors of \(Q_T K Q_T \)) and then compute \(U \). The PCA projection of data sample \(y \) (\(k(y, x) \) in feature-space) along \(u_i(x) \) can be computed as follows:

\[
\int k(y, x)u_i(x)dx = \frac{1}{d_i} \int k(y, x)X_k(x)Q_T v_i dx = \frac{1}{d_i} \left[\int k(y, x)X_k(x)dx \right] Q_T v_i = \frac{1}{d_i} X_k(y)Q_T v_i.
\]

Sometimes one is interested in the eigenvectors of \(W \) or \(B \). Equivalently, in feature-space the eigenvectors of \(X_k Q_W X'_k \) or \(X_k Q_B X'_k \). The same analysis as above can be carried out with \(Q_T \) replaced by \(Q_W \) or \(Q_B \).

4 LDA

The basic idea in LDA is to find a \(d \)-dimensional projection of the data corresponding to the \(d \) generalized eigenvectors of \((T, W) \) associated with the \(d \) largest generalized eigenvalues. From Eqn. 2-Eqn. 3 one has to solve the generalized eigenvalue problem for \((X Q_T X', X Q_W X') \).

\[
X Q_T X' u = l T u = l W u \iff \lambda X Q_W X' u.
\]

(8)

Notice wlog that \(u \) is in the span of the data (if it is in the orthogonal complement then it is in the null-space of \(X' \) i.e., in the null-space of both \(T \) and \(W \), in which case \(\lambda \) is indeterminate (0/0) and not interesting). In other words \(u = Xv \) for some vector \(v \in \mathcal{R}^i \). Multiplying both sides by \(X' \) we get

\[
X Q_T X' X v = \lambda X Q_W X' X v; \quad X' X Q_T X' X v = \lambda X' X Q_W X' X v.
\]

(9)
One can therefore either solve for u in Eqn. 8 or for v in Eqn. 9 and choose those v's that are not in the null-space of X. An interesting situation happens (that hardly ever occurs in practice for standard LDA since $n << l$) when $\text{rank}(X) = l$. In this case $X'X$ is invertible (i.e., the data samples are linearly independent - which typically happens when $l \leq n$) and therefore Eqn. 9 becomes

$$Q_T s = \lambda Q_W s,$$

where $s = X'Xv$ and $u = X(X'X)^{-1}s$. In this case,

1. Any vector $u \in X(X'X)^{-1}Q_W R_l$ is a generalized eigenvector with eigenvalue 1.
2. Any vector $u \in X(X'X)^{-1}Q_B R_l$ is a generalized eigenvector with $\lambda = \infty$
3. $u = X(X'X)^{-1}\frac{1}{\|e\|}e$ is a generalized eigenvector and λ is indeterminate ($0/0$).

If $d \leq J - 1$, then the d LDA directions can be chosen to be $X(X'X)^{-1}(\frac{1}{l}e_j - \frac{1}{l}e)$. Clearly there is an arbitrariness in this choice. The key result is that any ON basis for the span of $\mu_j - \mu$ will suffice from the point of view of LDA. In practice we can do better. Our proposal is to choose the top d PCA directions of the between class covariance matrix i.e., XQ_BX'. The basic interpretation of this result is that in this situation that W (and in particular all the class covariances) is singular. As such trying to compute the LDA directions by “sphering” the data (i.e., inverting W) leads to unbounded generalized eigenvalues. The solution is to ignore W and focus on the PCA directions of B.

5 Kernel LDA

As before consider the mapping $x_i \mapsto k(x_i, x)$ taking \mathcal{R}^n to $\mathcal{R}^{n'}$ and let X_k denote the data-matrix. In this case LDA direction $X_k u$ can be obtained by solving for the eigenvalue problem:

$$X_k Q_T X_k u = \lambda X_k Q_W X_k u,$$

or

$$X_k' X_k Q_T X_k' X_k v = \lambda X_k' X_k Q_W X_k' X_k v.$$

In the latter case the solution is $u = X_k v$. Unlike in standard LDA, in kernel LDA the situation Gram matrix $X_k'X_k$ is typically invertible (because the mapping is into an infinite dimensional space e.g., RBF kernels). Hence kernel LDA for different choices of the kernel the LDA directions are given by $X_k(X_k'X_k)^{-1}s$, where s solves $Q_T s = \lambda Q_W s$. This situation is described in earlier section. Any direction in the span of XQ_B will suffice as an LDA direction - and all such directions are equally preferred. In this situation our proposed solution is to choose the top d PCA directions of XQ_BX' which can be computed using the techniques in Section 3.