An Efficient Implementation of an Active Set Method for SVM

Katya Scheinberg
IBM T. J. Watson Research Center
katyas@us.ibm.com

September 30, 2005

Abstract

We propose an active set algorithm to solve the convex quadratic programming (QP) problem which is the core of the support vector machine (SVM) training. The underlying method is not new and is based on the extensive practice of the Simplex method and its variants for convex quadratic problems. However, its application to large-scale SVM problems is new. Until recently the traditional active set methods were considered impractical for large SVM problems. By adapting the methods to the special structure of SVM problems we were able to produce an efficient implementation. We conduct an extensive study of the behavior of our method and its variations on SVM problems. We present computational results comparing our method with Joachims’ SVM* [16]. The results show that our method has overall better performance on many SVM problems. It seems to have particularly strong advantage on more difficult problems. In addition this algorithm has better theoretical properties and it naturally extends to the incremental mode.

1 Introduction

In this paper we introduce an active set method to solve the following convex quadratic programming (QP) optimization problem which is defined by 1-Norm Soft Margin SVM problem.

$$
\begin{align*}
\text{max} & \quad \frac{1}{2} \alpha^T Q \alpha - c^T \xi \\
\text{s.t.} & \quad -Q \alpha + b y + s - \xi = -e,
\end{align*}
$$

(P)
\[0 \leq \alpha \leq c, \ s \geq 0, \ \xi \geq 0, \]

where \(\alpha \in \mathbb{R}^n \) is the vector of dual variables, \(b \) is the bias (scalar) and \(s \) and \(\xi \) are the \(n \)-dimensional vectors of slack and surplus variables, respectively. \(y \) is a vector of labels, \(\pm 1 \). \(Q \) is the label encoded kernel matrix, i.e. \(Q_{ij} = y_i y_j K(x_i, x_j) \), \(e \) is the vector of all 1’s of length \(n \) and \(c \) is the penalty vector associated with errors (in standard soft margin SVMs the vector \(c \) is a product of vector \(e \) and a scalar penalty \(C \), but here we will allow for any nonnegative vector \(c \)). The dual of this problem is

\[
\begin{aligned}
\min & \quad \frac{1}{2} \alpha^T Q \alpha - \tau e^T \alpha \\
\text{s.t.} & \quad y^T \alpha = 0, \\
& \quad 0 \leq \alpha \leq c.
\end{aligned}
\]

General convex QPs are typically solved by one of the two approaches: interior point method approach or active set method approach. If the Hessian of an objective function (matrix \(Q \) in case of SVM) and/or the constraint matrix of the QP problem is large and sparse then an interior point method is usually the method of choice. If the problem is of moderate size but the matrices are dense, then active set method is preferable. In SVM problems the \(Q \) matrix is typically dense. Thus, large SVM problems present a challenge for both approaches. It was shown [7], [3] that for some classes of SVMs, for which \(Q \) is dense but low-rank, one can adapt an interior point method to work very efficiently. However, if the rank of \(Q \) is high, an active set approach seems to remain the only main alternative.

One of the most “traditional” active set methods in the optimization literature is the Simplex method for linear programming (LP) problems. The Simplex method is known to have very good practical performance. The QP analogues, though not as extensively tested in practice, are also considered to be very efficient. There are a few methods based on the Simplex method idea for solving QP problems, see e.g., [8], [11], [12]. Many of them are theoretically equivalent, meaning that they produce the same sequence of iterations, but they have different numerical properties (such as per-iteration complexity and numerical stability). In this paper we derive an implementation targeted to SVM problems based on the framework described in [8], [11] and [18].

The main idea of this method in the context of SVM is to fix, at each iteration, all variables in the current dual active set\(^1\) at their current values

\(^1\)The dual active set is the set of dual variables \(\alpha \) whose values are at their bound.
(0 or c), and then to solve the reduced dual problem. After obtaining a solution - decide whether it is optimal for the overall dual problem (same as being feasible for the overall primal problem), or if any of the dual variables should be released from the active set.

When applied to SVM, this approach poses the following problem: if the complement of the dual active set (the set of “free” variables) has large cardinality, then solving the restricted subproblems may be too expensive, since \(Q \) is completely dense. Also determining the next variable to leave the active set may be expensive for the same reason. Therefore, updating all “free” variables at once was considered impractical.

The most common approach to large SVM problems is to use a restricted active set method, such as Chunking [2] or Decomposition [19], [16] where at each iteration only a small number of variables are allowed to be varied. The size of such “chunk” is determined heuristically or is chosen by the user. There are a few skillfully implemented SVM solvers based on this type of restricted active set methods, see e.g., [16], [20]. The main disadvantage of these methods is that they tend to have slow convergence when getting closer to the optimal solution. Moreover, their performance is sensitive to the changes in chunk size and there is no good way of predicting a good choice for the size of the chunks for a particular problem\(^2\).

A full active set method, such as the one presented in this paper, avoids these disadvantages. The method itself is not new, see e.g. [18]. Our contribution is to adapt it to the SVM framework and provide an efficient implementation.

First we notice that the support vectors that violate the margin constraint (i.e., the \(\xi \) surplus variable is positive) correspond to variables \(\alpha \) which are at their upper bound and therefore are in the dual active set. The complement of the dual active set contains variables \(\alpha \) that are strictly between the upper and lower bounds. Such variables correspond only to the support vectors that are exactly on the margin (i.e., both corresponding slack and surplus variables are zero). The current number of such support vectors, \(n_s \), is the size of the reduced QP (RQP). Solving such RQP directly (say, by an IPM method, as it is done in SVM\(^\text{light}\)) requires at least \(O(n_s^3) \) operations, which might be prohibitively expensive if repeated over and over again and if \(n_s \) is relatively large. We do not solve RQP directly, but only

\(^2\)See section 12.1.1 in [20] for a similar discussion which motivated Platt’s SMO. Essentially SMO is an active set method in which the chunk size is fixed to be the smallest possible, i.e. 2.
make one step toward its solution at each iteration. Moreover, the active set is incremented only by one variable at a time (either one variable leaving, or one entering the active set), hence we can store and update a factorization of the reduced matrix Q. Each update takes $O(n^2)$ operations and so does solving a system of equations with the reduced matrix Q.

At each such step toward the optimal solution of the RQP, we either find that solution or encounter a bound on one of the “free” variables. In the latter case this variable is included into the active set and the process repeats.

This process does not always produce an optimal solution to the sub-problem, but usually produces a good approximation of it. Typically this does not affect the overall number of iterations significantly, whereas the reduction of the per-iteration cost is significant.

The RQP may sometimes have an infinite solution, if reduced matrix Q is singular. In this case an infinite descent direction is computed and a step is taken along this direction until one of the variable bounds is encountered. We provide the full treatment of the various cases for solving the RQP subproblem. We use the approach described in [10].

If the search for the optimum of the RQP subproblem is terminated then our method determines whether the primal feasibility was achieved and if not, which dual variable should leave the active set. To do that we need to compute a product of a submatrix of Q that corresponds to the variables at their upper bounds and the unit vector of an appropriate length. This can be very expensive to compute at each iteration, instead one should rather store and update the result of this multiplication. Another advantage of using “one-variable-at-a-time” increments is in potentially reducing the cost of such updates.

The multiple updates to the active set, which are used in “chunking” and “decomposition” methods could still have an advantage if the overall number of iterations were significantly smaller than in the case of single updates. But as our computational results indicate this is not the case. We offer some intuition to support this claim. Assume that your data contains 10 identical data points which at the current iteration are the most violated examples and we would like to introduce them into the next “chunk”. Introducing all the 10 at once implies 10 times more work than introducing just one. Yet since they are identical, then introducing just one produces the same result as introducing all ten. Since the training data is often somewhat repetitive (there may not be identical points, but rather very similar points, e.g. in clustered data sets) this example is not too far fetched.
As the computational results show, our method has particular advantage over SVMtight on problems where the number of the support vectors or the number of outliers is large (but not necessarily excessive, e.g., ∼ 1000 out of 20000 vectors). Our algorithm currently requires the storage of the Cholesky factors of the reduced matrix Q, which might require excessive amount of memory for problems where the number of unbounded support vectors is very large. However, this often means that the chosen kernel suffers from overfitting the data, so the problem is badly posed in some sense, unless the entire test set is very large, in which case one should consider a different implementation, and, possibly, a more powerful computer.

The most expensive step of our algorithm (and of SVMtight, in fact) is pricing the primal constraints and choosing the next constraint to enter the active set. We will compare two approaches. One of these approaches is shrinking, which is used by SVMtight, and the other is sprint which is an industry standard in advanced implementations of LP solvers [21]. We observe that sprint appears to work better than shrinking on difficult SVM problems.

The proposed method enjoys several theoretical advantages compared to the methods based on chunking. First of all it converges in a finite number of iterations [8], [10]. In the worst case this number might be exponential, but it is hardly the case in practice. The method is also well suited for analysis of various situations. For instance, in [15] a randomized active set algorithm for SVM is introduced and shown to have a quasi-linear average complexity. Our algorithm can be easily adapted to fit the randomized framework of [15], hence similar average case results apply.

Recently, active set methods for SVM similar to ours were used in [4] for incremental learning and in [14] for generating the entire regularization path. Their methods, unlike ours, require primal and dual feasibility to be satisfied at every iteration and progress by changing the optimization problem itself (in a manner dictated by the respective uses of their methods). However, many of the efficiency issues of the algorithms are similar, such as the possible singularity of the reduced matrix Q and efficient updates of its Cholesky factorization. Though we choose to focus on one specific active set method in this paper, we believe the experience we present here will be useful for other active set methods for SVM problems.

The paper is organized as follows. In the next section we introduce the dual active set method for the soft-margin SVM problem and describe the details of solving the reduced QP problem. In Section 3 we will present the results of comparing our method to SVMtight on a selection of classification
problems from UCI repository [1]. In Section 4 we will focus on various implementation issues that arise in the attempt to improve the performance of the method. In Subsection 4.4 we apply our method to the incremental case. Section 5 contains some conclusions.

2 Dual active set method for SVM

Any optimal solution to problems (P) or (D) must satisfy the Karush-Kuhn-Tucker (KKT) necessary and sufficient optimality conditions:

1. \(\alpha_i s_i = 0, \quad i = 1, \ldots, n \)
2. \((c_i - \alpha_i) \xi_i = 0, \quad i = 1, \ldots, n \)
3. \(y^T \alpha = 0 \)
4. \(-Q\alpha + by + s - \xi = -e \)
5. \(0 \leq \alpha \leq c \)
6. \(s \geq 0, \xi \geq 0 \).

Let us introduce some notation. A primal-dual solution \((\alpha, b, s, \xi)\) is called dual basic feasible if it satisfies condition (1)-(5) of the KKT system, but may violate condition (6). For a given dual basic feasible solution, \((\alpha, b, s, \xi)\), we partition the index set \(I = \{1, \ldots, n\} \) into three sets \(I_0, I_c \) and \(I_s \) in the following way: \(\forall i \in I_0: s_i \geq 0 \) and \(\forall i \in I_c: \xi_i \geq 0 \) and \(\forall i \in I_s: s_i = 0 \) and \(0 < \alpha_i < c_i \). It is easy to see that \(I_0 \cup I_c \cup I_s = I \) and \(I_0 \cap I_c = I_c \cap I_s = I_0 \cap I_s = \emptyset \). We will refer to \(I_s \) as the primal active set and to \(I_0 \cup I_c \) as the dual active set. Let \(n_s = |I_s|, n_0 = |I_0| \) and \(n_c = |I_c| \).

Based on the partition \((I_0, I_c, I_s)\) we define \(Q_{ss}, Q_{cs}, Q_{cc}, Q_{0s}, Q_{00} \) as the submatrix of \(Q \) whose columns are the columns of \(Q \) indexed by the set \(I_s (I_c, I_s, I_c, I_0, I_0) \) and whose rows are the rows of \(Q \) indexed by \(I_s (I_c, I_s, I_c, I_0, I_0) \). We also define \(y_s (y_c, y_0) \) and \(\alpha_s (\alpha_c, \alpha_0) \) and the subvectors of \(y \) and \(\alpha \) whose entries are indexed by \(I_s (I_c, I_0) \). \(c_c \) is the part of vector \(c \) indexed by \(I_c \) and by \(e \) we denote a vector of all ones whose size is clear from the context.

To initiate the algorithm we assume that we have a dual basic feasible solution \(\alpha^0, b, s^0, \xi^0 \) and the corresponding partition \((I_0^0, I_c^0, I_s^0)\). For example setting \(\alpha^0 = 0 \) and \(I_0 = \{1, \ldots, n\} \) produces a starting point for the algorithm.
We know that \(\forall i \in I_0 \alpha_i = 0 \) and \(\forall i \in I_c \alpha_i = c_i \). Then if we fix the variables in the dual active set then our dual problem reduces to

\[
\min_{\alpha_s} \quad \frac{1}{2} \alpha_s^T Q_{ss} \alpha_s + c_c^T Q_{cs} \alpha_s - e^T \alpha_s \\
\text{s.t.} \quad y_s \alpha_s = -y_c c_c, \\
0 \leq \alpha_s \leq c.
\]

The outline of the algorithm is the following:

Step 0 Given \(\alpha^0, \beta^0, s^0, \xi^0 \) find initial \(I_s, I_0 \) and \(I_c \).

Step 1

(i) Solve

\[
\min_{\alpha_s} \quad \frac{1}{2} \alpha_s^T Q_{ss} \alpha_s + c_c^T Q_{cs} \alpha_s - e^T \alpha_s \\
\text{s.t.} \quad y_s \alpha_s = -y_c c_c.
\]

If a finite solution, \(\alpha^*_s \), exists, then set \(d = \alpha^*_s - \alpha_s \), otherwise find \(d \) - an infinite descent direction.

(ii) From the current iterate make a step along direction \(d \) until for some \(i \in I_s \alpha_i = 0 \) or \(\alpha_i = c_i \) or until solution is reached. \(\alpha^{k+1}_s \) is the new point.

(iii) If for some \(i \in I_s \), \(\alpha^{k+1}_s = 0 \),
then update \(I_s := I_s \setminus \{i\}, I_0 := I_0 \cup \{i\}, k := k + 1 \) and go to step (i).

(iv) If for some \(i \in I_s \), \(\alpha^{k+1}_s = c_i \),
then update \(I_s := I_s \setminus \{i\}, I_c := I_c \cup \{i\}, k := k + 1 \) and go to step (i).

(v) If the optimum is reached in step (ii); i.e., \(\alpha^{k+1}_s = \alpha^*_s \), proceed to **Step 2**.

Step 2 Partition \(I_0 \) into \(I'_0 \) and \(I''_0 \) and partition \(I_c \) into \(I'_c \) and \(I''_c \)

(i) Compute \(s'_0 \), the subvector of \(s \) indexed by \(I'_0 \):

\[
s'_0 = -Q_{s0}^T \alpha^{k+1}_s - y_0 \beta + 1 - Q_{s}^T c_c
\]
and ξ_p, the subvector of ξ indexed by I_p:

$$\xi_p' = Q'_{ps}a_p + y_p' + Q'_{cc}c,$$

where Q'_{ps} and Q'_{cc} (Q'_{cs} and Q'_{cc}) are the submatrices of Q_{ps} and Q_{cc}, respectively, (Q_{cs} and Q_{cc}, respectively) with rows index by I_p (I_c).

(ii) Find $i_0 = \text{arg} \min_i \{ s_i : i \in I_p \}$.
 Find $i^*_c = \text{arg} \min_i \{ \xi_i : i \in I_c \}$.

(iii) If $s_{i_0} \geq 0$ and $\xi_{i_C} \geq 0$ then if $I_p \neq I_0$ or $I_c \neq I_0$, then let $I_p' := I_0$ and $I_c' := I_c$ and go to Step 2(i). Else, the current solution is optimal, **Exit**.
 If $s_{i_0} \leq \xi_{i_C}$, then $I_s := I_s \cup \{i_0\}$ and $I_0 := I_0 \setminus \{i_0\}$. Else, $I_s := I_s \cup \{i_C\}$ and $I_0 := I_0 \setminus \{i_C\}$.

$k := k + 1$, go to **Step 1**.

We will now discuss in details the implementation of the steps of the algorithm.

2.1 Solving quadratic subproblem

When matrix Q_{ss} is strictly positive definite then problem (2) has a unique finite solution. This solution satisfies the KKT conditions:

$$-Q_{ss}a_s + y_s' \beta = -e + c_Q a_s$$

$$y_s a_s = -c_c y_c,$$

or, in matrix form,

$$
\begin{bmatrix}
-Q_{ss} & y_s \\
y_s' & 0
\end{bmatrix}
\begin{bmatrix}
\alpha_s \\
\beta
\end{bmatrix}
=
\begin{bmatrix}
-e + Q_{sc} c_s \\
-c_c y_c
\end{bmatrix}.
\tag{3}
$$

Since we are considering the case when Q_{ss} is nonsingular, we can find β by taking the Schur complement of the above system

$$(y_s Q_{ss}^{-1} y_s \beta) = y_s Q_{ss}^{-1} (e + Q_{sc} c_s) - c_c y_c.$$

Consider the Cholesky factorization $Q_{ss} = L_s L_s^T$ and denote $L_s^{-1} y_s$ by r_1 and $L_s^{-1} (e + c_Q^T Q_{cs})$ by r_2. Then the solution to (3) is

$$\beta = \frac{r_1^T r_2 - c_c y_c}{r_1^T r_1}, \quad \alpha_s = L_s^{-T} (r_1 \beta - r_2).$$
It is often the case, however, that Q_{ss} is not strictly positive definite. This can even occur when an RBF kernel (which is strictly positive definite for distinct data points) is used, if the set I_s contains indices of two identical data points with different labels.

If, due to singularity of Q_{ss}, system (3) is underdetermined, this means that problem (2) has an unbounded solution. In this case Step 1(i) should produce an infinite descent direction for (2). A direction d is an infinite direction if it satisfies $Q_{ss}d = 0$ and $y_s^T d = 0$. Depending on the sign of $(-e + c_s^T Q_{ss})^T d$ either d or $-d$ is chosen the infinite descent direction. Variable β remains unchanged in this case. We use the approach for positive semidefinite QP problems described in [10], [17].

We consider several cases.

Case 1

Let Q_{ss} have only one zero eigenvalue. Then, subject to permutation and without loss of generality, its Cholesky factorization can be written as

$$Q_{ss} = \begin{bmatrix}
L_s & 0 \\
\tilde{L}_s & 0
\end{bmatrix}
\begin{bmatrix}
L_s^T & l_s
\end{bmatrix},$$

where $L_s \in \mathbb{R}^{(n_s-1) \times (n_s-1)}$ and $\tilde{L}_s \in \mathbb{R}^{n_s-1}$. Then system (3) can be written as

$$
\begin{bmatrix}
-L_s L_s^T & -L_s l_s & y_{1:n_s-1} \\
-\tilde{L}_s L_s^T & -\tilde{L}_s l_s & y_{n_s} \\
y_{1:n_s-1} & y_{n_s} & 0
\end{bmatrix}
\begin{pmatrix}
\alpha_{1:n_s-1} \\
\alpha_{n_s} \\
\beta
\end{pmatrix} =
\begin{pmatrix}
(-e + Q_{sc} c_c)_{1:n_s-1} \\
(-e + Q_{sc} c_c)_{n_s} \\
c_s^T y_c
\end{pmatrix},
$$

where, following Matlab notation, $y_{1:n_s-1}$, $(-e + Q_{sc} c_c)_{1:n_s-1}$ denote the first $n_s - 1$ elements of vector y $(\alpha, (-e + \alpha Q_{sc} e))$ and y_{n_s}, $(\alpha_{n_s}, (-e + Q_{sc} c_c)_{n_s})$ denotes the last component of this vector.

Let $r_1 = L_s^{-1} y_{1:n_s-1}$ and $r_2 = L_s^{-1} (-e + Q_{sc} c_c)_{1:n_s-1}$. By expressing $\alpha_{1:n_s-1}$ in the above system through α_{n_s} and β, and by consecutively eliminating α_{n_s} we obtain

$$(-l_s^T r_1 + y_{n_s}) \beta = (-e + Q_{sc} c_c)_{n_s} - l_s^T r_2.$$
(a) If \(l_s^T r_1 \neq y_{ns} \), then system (3) still has a unique solution

\[
\beta = \frac{(-c + Q_{sc}c_c)_{ns} - l_s^T r_2}{-l_s^T r_1 + y_{ns}},
\]

\[
\alpha_{ns} = \frac{c_{c} y_c + r_1 r_2 - \beta r_1 r_1}{-r_1^T l_s + y_{ns}}
\]

\[
\alpha_s = L_s^{-T} (-l_s \alpha_{ns} + r_1 \beta - r_2).
\]

(b) If \(l_s^T r_1 + y_{ns} = 0 \) then system (3) is singular, hence we are looking for an infinite direction \(d \). \(d_s = ((L_s^{-1} l_s)^T, -1)^T \) is such a direction. It can be easily shown that \(Q_{ss} d_s = 0 \) from the form of the factorization of \(Q_{ss} \), and it can be easily shown that \(y_s d_s = 0 \) from the fact that \(l_s^T r_1 + y_{ns} = 0 \).

Case 2

Let us now consider the case when \(Q_{ss} \) has exactly two zero eigenvalues. Then, again w.l.o.g., we can write its Cholesky factorization as

\[
Q_{ss} = \begin{bmatrix}
L_s & 0 & 0 \\
\tilde{l}_s & 0 & 0 \\
l_s^T & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
L_s^T & l_s^T & l_{s_2}^T \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix},
\]

where \(L_s \in \mathbb{R}^{n_s \times 2} \), \(\tilde{l}_s \in \mathbb{R}^{n_s - 2} \), \(l_s, l_{s_2} \in \mathbb{R}^{n_s - 2} \). The system (3) is always underdetermined in this case, hence an infinite direction always exists. There are, again, two possible cases.

(a) If \(l_{s_2}^T r_1 \neq y_{ns} \) then the following direction

\[
d = (L_s^{-T} (l_{s_1} - \rho l_{s_2}), -1, \rho), \text{ where } \rho = \frac{y_{ns} - l_{s_2}^T r_1}{y_{ns} - l_{s_1}^T r_1}
\]

is an infinite direction. \(Q_{sd} d = 0 \) follows from the form of the Cholesky factorization and \(y^T d = 0 \) is also easily shown by substitution.

(b) If \(l_{s_2}^T r_1 = y_{ns} \) then

\[
d = (L_s^{-T} l_{s_2}, 0, -1)
\]

is an infinite direction. This case can be shown similarly to Case 1(b).
Case 3

Finally let us consider the case when \(Q_{ss} \) has more than two zero eigenvalues. First, we observe that this case can only happen in the early stage of the algorithm. Whenever \(Q_{ss} \) has more than one zero eigenvalue, then system (3) is underdetermined and an infinite direction is found during Step 1(i). Hence, during Step 1(ii) a boundary is always encountered. This means that the set \(I_s \) gets reduced by one element and the number of zero eigenvalues of \(Q_{ss} \) may only decrease or remain the same. Step 1 repeats until \(Q_{ss} \) has at most one zero eigenvalue. Hence, the only way that \(Q_{ss} \) may have more than two zero eigenvalues is if a starting solution with such \(Q_{ss} \) matrix is given to the algorithm. Such case arises when a warm start is used to initiate the algorithm, as described in Subsection 4.3, therefore, we consider this case here. Let \(k > 2 \) be the number of zero eigenvalues of \(Q_{ss} \); as before we write, w.l.o.g., the factorization of \(Q_{ss} \):

\[
Q_{ss} = \begin{bmatrix}
L_s & 0 & 0 & 0 \\
L_s^T & 0 & 0 & 0 \\
l_{s1} & 0 & 0 & 0 \\
l_{s2} & 0 & 0 & 0 \\
H_s & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
L_s^T & l_{s1} & l_{s2} & H_s^T \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix},
\]

where \(L_s \in \mathbb{R}^{n_x-k \times n_x-k} \), \(l_{s1}, l_{s2} \in \mathbb{R}^{n_x-k} \) and \(H_s \in \mathbb{R}^{n_x-k \times k-2} \). We generate the infinite direction for the first \(n_x-k+2 \) variables exactly as it is done in Case 2 and we do not change the last \(k-2 \) variables. During each application of Case 3 of Step 1 we reduce \(I_s \) by one elements until \(Q_{ss} \) has at most 1 nonzero eigenvalue, and Case 3 does not arise again for that problem.

2.2 Rank-one updates to \(Q_{ss} \)

On each iteration of the algorithm the set \(I_s \) can decrease by one element only and/or increase by one element only. Hence, from each iteration to the next, \(Q_{ss} \) changes by an addition and/or a deletion of one row and column. Instead of recomputing the Cholesky factorization each time, which would require \(O(n_x^3) \) operations, it is more efficient to keep the Cholesky factorization of \(Q_{ss} \) and update it accordingly when a row and a column are added to or deleted from \(Q_{ss} \). Each such update requires only \(O(n_x^2) \) operations. These updates can be found in [13], but we present them here for completeness.
Increasing I_s. Assume first that Q_{ss} is nonsingular and $Q_{ss} = L_sL_s^T$ is its Cholesky factorization. Let $q_s \in \mathbb{R}^{n_s+1}$ be the new row (column) that is added to Q_{ss}. Aside from possible numerical issues, which we discuss later, q_s can be added as the last row and column of Q_{ss}. Then the Cholesky factorization of the new matrix is

$$
\begin{bmatrix}
L_s & L_s^{-1}(q_s)_{1:n_s} \\
0 & (q_s)_{n_s+1}^2 - (q_s)_{1:n_s}^T L_s^{-T} L_s^{-1}(q_s)_{1:n_s}
\end{bmatrix},
$$

where $(q_s)_{1:n_s}$ are the first n_s components of the vector q_s and $(q_s)_{n_s+1}$ is its last component. It is easy to see that obtaining the new factorization requires $O(n_s^2)$ operations.

If Q_{ss} is singular, then from the discussion in Case 3 of the previous subsection, it can only have one nonzero eigenvalue, since I_s is increased and hence Step 2 was performed. In this case we permute the rows and columns of Q_{ss} so that the dependent column and row are at the end of Q_{ss} and inserted column and row are placed in the one before last positions. The last two rows of Cholesky factorization may need to be updated in a similar manner to above, however the total work is still $O(n_s^2)$. In case when Q_{ss} is nonsingular, but nearly so, it is sometimes important for numerical stability to use pivoting during its Cholesky factorization procedure [6]. In such a case refactorization of several rows of L_s might be required even if only one row and column are added to Q_{ss}. However, we did not encounter such situation in our computational experiments.

Decreasing I_s. When I_s is decreased by one element, then a row and a column are removed from Q_{ss}, which corresponds to removing a row from the Cholesky factor L_s. If, say, k-th row was removed from L_s then it is no longer lower triangular. In fact it is nearly lower triangular, except for the elements in positions $(j, j + 1)$ for $j = k + 1, \ldots, n_s - 1$. To zero out these elements we apply Givens rotations (see [13]) to the new matrix L_s; in other words we multiply L_s on the right by orthogonal matrices of the form

$$
\begin{bmatrix}
1 & \cdots & 0 & 0 & 0 \\
\vdots & & \vdots & & \\
0 & 0 & c & -s & 0 \\
0 & 0 & s & c & 0 \\
0 & \cdots & 0 & 0 & 1
\end{bmatrix}
$$
Each such matrix multiplication takes \(O(n_s) \) operations and zeros out one off-diagonal elements, hence we need \(O(n_s - k) \) such multiplications, which results in the total work of \(O(n_s^2) \) to update the Cholesky factorization of \(Q_{ss} \) when an element is removed from \(I_s \).

Remark 2.1 In [10] there are efficient updates for the vectors \(r_1 \) and \(r_2 \), that we introduced in Subsection 2.1. These vectors are results of backsolves with the Cholesky factors of \(Q_{ss} \) and given right hand side vectors. In the case of [10] the right hand side vectors remain the same throughout the algorithm and only the Cholesky factors change. In our case this is true only for \(r_1 \) but not for \(r_2 \), which changes each time the set \(I_c \) changes. These updates can also improve the efficiency of the algorithm when these backsolves have a noticeable contribution to the overall workload of the algorithms. Since this does not occur very frequently we do not get into further details in this paper.

Remark 2.2 If \(n_s \) is very large and is comparable to \(n \) then even storing and updating the Cholesky factors of \(Q_{ss} \) become too expensive compared to solving the entire problem. Our method is not practical on such problems. However, it is questionable whether such problems should ever be solved, since the resulting classifiers is most likely over-fitting the data and its generalization properties are expected to be very poor. ³

Updating \(I_c \) Finally we discuss a trivial but useful updates to \(Q_{xc_c}, Q_{dc_c} \) and \(Q_{cc_c} \) when the set \(I_c \) is either increased or decreased by one element. We maintain vector \(Q_{c_c} \) throughout the algorithm, when index \(i \) is added to \(I_c \) then a \(c_i \) multiple of the \(i \)-th column of \(Q \) is added to \(Q_{c_c} \). If index \(i \) is removed from \(I_c \), then such a vector is subtracted from \(Q_{c_c} \).

³See for example [5], Theorem 4.25, for the generalization power of compression schemes, and the discussion right after and in chapter 6.
3 Computational experiments

3.1 Comparison to SVMtight

In this subsection we compare our implementation of the proposed algorithm, which we call SVM-QP, to SVMtight [16]. We used a high-end IBM RS/6000 workstation in our experiments. We made the same amount of memory available to both methods. Just as in SVMtight the sparsity of the examples is exploited by SVM-QP during the kernel evaluations. Unlike SMO [20] there is no special handling for the case of linear kernel.

We used the following data sets in our experiments:

- Letter-G: The Letter Image Recognition dataset from the UCI Repository [1] - A large number of black-and-white character images were randomly distorted to produce a file of 20,000 unique stimuli. Each stimulus was converted into 16 primitive numerical attributes (statistical moments and edge counts) which were then scaled to fit into a range of integer values from 0 through 15. In the table we examined performances on an arbitrary binary classification problem which was set to separate the letter “G” from all the other letters.

- OCR: USPS (United States Postal Service) data set of hand written digits. This data set comprises 7291 training and 2007 test patterns, represented as 257 dimensional vectors with entries between 0 and 255. T0(T9) stand for the binary classification problem in which the target is the digit 0(9) vis. the all the other digits.

- Web and Adult4: We used the tasks that was compiled by Platt and available from the SMO home page5

 - Adult - The goal is to predict whether a household has an income greater than $50000. After discretization of the continuous attributes, there are 123 binary features, with \(\approx 14 \) non-zeros per example.

 - Web - A text classification problem with binary representation based on 300 keyword features. This representation is extremely sparse. On the average there are only \(\approx 12 \) non-zero features per example.

4Original data set is from the UCI Repository [1]

5http://www.research.microsoft.com/jplatt/smo.html
For both problems we chose the test cases with half of the overall available example. We did so to enable to complete many computational tests in a reasonable amount of time.

- Abalone: The Abalone dataset from the UCI Repository [1]. Since, we were not interested in evaluating generalization performances, we fed the training algorithm with increasing subsets up to the whole set (of size 4177). The gender encoding (male/female/infant) was mapped into \{(1,0,0),(0,1,0),(0,0,1)\}. Then data was scaled to lie in the [-1,1] interval.

- Spam: This is another dataset from the UCI Repository [1]. It was created by M. Hopkins, E. Reeder, G. Forman and J. Suermond of Hewlett-Packard Labs. It contains 4601 examples of emails roughly 39% of which are classified as spam. There are 57 attributes for each example, most of which represent how frequently certain words or characters appear in the email. We did not use in the SVM^{light} tests due to the lack of appropriate input format for this problem, but we used it in various tests of SVM-QP.

For each data set we used a selection of kernels and parameters to demonstrate how the performance of the methods is affected by \(n_s \) - the number of support vectors at the margin, and \(n_c \) - the number of support vectors at the upper bound. For the same reason we use various values of \(C \). We use RBF kernel with parameter \(\sigma \). We also use the linear kernel for a Letter-G and Spam problems and polynomial kernel of degree 5 for the Abalone dataset. In the table we indicate the kernel and the value of \(C \) in the name of the test case. For instance web.100_10 stands for the web data set with parameter \(\sigma = 100 \) and \(C = 10 \). Name letter.lin_100 stands for the Letter-G set with linear kernel and \(C = 100 \), finally abalone.p5_100 stands for the Abalone set with polynomial kernel of degree 5 and \(C = 100 \).

We provide two columns of CPU times for SVM^{light}. The first one, SVM_{light}, contains the time of the runs with default accuracy. The second column, SVM_c contains the CPU time of the runs with the accuracy set to 10^{-6} which is the accuracy of SVM-QP.

We chose CPU time as the most reasonable performance measure in our setting. The “-” in the table indicates the failure of SVM_{light} on that problem.

Below is the table of results. As we can see, SVM-QP is faster than even the lower accuracy SVM_{light}, on all of the problems. It is faster by at least
a factor of 2 on almost all of the problems and by a factor of 5 or more on a few problems.

<table>
<thead>
<tr>
<th>Name</th>
<th>n</th>
<th>k</th>
<th>n_s</th>
<th>n_c</th>
<th>SVMright</th>
<th>SVMc right</th>
<th>SVM-QP</th>
</tr>
</thead>
<tbody>
<tr>
<td>web_100_100</td>
<td>24692</td>
<td>300</td>
<td>980</td>
<td>453</td>
<td>380</td>
<td>918</td>
<td>65</td>
</tr>
<tr>
<td>web_40_10</td>
<td>24692</td>
<td>300</td>
<td>1037</td>
<td>568</td>
<td>211</td>
<td>377</td>
<td>68</td>
</tr>
<tr>
<td>web_40_100</td>
<td>24692</td>
<td>300</td>
<td>1214</td>
<td>313</td>
<td>368</td>
<td>685</td>
<td>84</td>
</tr>
<tr>
<td>web_100_10</td>
<td>24692</td>
<td>300</td>
<td>679</td>
<td>835</td>
<td>203</td>
<td>358</td>
<td>40</td>
</tr>
<tr>
<td>letter_100_100</td>
<td>20000</td>
<td>16</td>
<td>241</td>
<td>39</td>
<td>19</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>letter_40_1</td>
<td>20000</td>
<td>16</td>
<td>250</td>
<td>266</td>
<td>6</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>letter_40_100</td>
<td>20000</td>
<td>16</td>
<td>346</td>
<td>8</td>
<td>11</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>letter_100_10</td>
<td>20000</td>
<td>16</td>
<td>193</td>
<td>146</td>
<td>10</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>letter_40_10</td>
<td>20000</td>
<td>16</td>
<td>320</td>
<td>57</td>
<td>8</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>letter_jin_100</td>
<td>20000</td>
<td>16</td>
<td>17</td>
<td>1056</td>
<td>1052</td>
<td>1190</td>
<td>35</td>
</tr>
<tr>
<td>ocr9_256_100</td>
<td>7291</td>
<td>256</td>
<td>378</td>
<td>0</td>
<td>13</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>ocr0_256_100</td>
<td>7291</td>
<td>256</td>
<td>309</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>abalone_4_100</td>
<td>4177</td>
<td>10</td>
<td>64</td>
<td>1863</td>
<td>135</td>
<td>198</td>
<td>5</td>
</tr>
<tr>
<td>abalone_p5_100</td>
<td>4177</td>
<td>10</td>
<td>304</td>
<td>1520</td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>adult_100_1</td>
<td>16100</td>
<td>123</td>
<td>97</td>
<td>5996</td>
<td>153</td>
<td>154</td>
<td>81</td>
</tr>
<tr>
<td>adult_100_100</td>
<td>16100</td>
<td>123</td>
<td>1281</td>
<td>4823</td>
<td>515</td>
<td>856</td>
<td>175</td>
</tr>
<tr>
<td>adult_200_1</td>
<td>16100</td>
<td>123</td>
<td>168</td>
<td>5785</td>
<td>159</td>
<td>152</td>
<td>85</td>
</tr>
<tr>
<td>adult_200_100</td>
<td>16100</td>
<td>123</td>
<td>483</td>
<td>5219</td>
<td>332</td>
<td>447</td>
<td>140</td>
</tr>
<tr>
<td>adult_50_10</td>
<td>16100</td>
<td>123</td>
<td>615</td>
<td>5143</td>
<td>207</td>
<td>243</td>
<td>120</td>
</tr>
</tbody>
</table>

Now we will discuss some implementation choices.

4 Implementation issues

4.1 Selecting the incoming element of I_s

In this subsection we discuss the implementation of Step 2(i).

First of all we note that the computational cost of Step 2(i) depends on whether the kernel values are available in the memory or have to be computed. We need $O(|I_s||I_0^c| + |I_c^l|)$ kernel values at each iteration when Step 2 is invoked. Specifically we need the elements of matrix Q whose column indices are in I_s and whose row indices are in I_c^l and I_0^c.

We note that we always store the $n_s \times n_s$ matrix Q_{ss}. This can be a problem when n_s is large. Our algorithm requires storage of the Cholesky
factor of Q_{ss}, hence even if we do not store Q_{ss} itself, the storage requirement can be reduced at most by half. In our experiments the size of Q_{ss} and its Cholesky factor was reasonable. For extremely large problems a different implementation may be necessary which solves the linear system in Step 1 by an iterative solver.

To reduce the computational cost it is best to be able to store the entire Q_s matrix (i.e., the submatrix of Q whose column indices are in I_s). In some cases this might be prohibitively expensive in terms of memory. In our experiments we were able to store Q_s in the space not exceeding 400MB. At the end of this subsection we will discuss the memory saving version of our code.

Let us assume for now that matrix Q_s is available. We will consider various ways of reducing the number of elements in I_0 and I'_c at each repetition of Step 2(i). One simple way to achieve this is to compute the elements of s'_0 and ξ'_c until a negative element is encountered, hence, not looking for the maximum violation, but for any violation. This may reduce the per-iteration time, but greatly increases the number of iterations, as has been shown by extensive practice of the Simplex method in linear programming [22]. We will demonstrate this in the section on the incremental mode, since the incremental mode lacks the ability to “look ahead” and select the maximum violated constraint. We conclude that it is important to select the most negative or nearly most negative element of s'_0 and ξ'_c during Step 2.

We use the following concepts, common in LP literature. The primal slack and surplus variables s_i and ξ_i are the reduced costs of the associated dual variable α_i, whose value is currently at a bound. Computing the values of the reduced costs (recall that for each i only one of the reduced costs is not equal to zero) is called pricing of the appropriate dual variable. Hence it is important to price all variables with indices in I'_0 and I'_c and maintain these sets in such a way that they contain indices of substantially negative reduced costs.

The efficiency of the large-scale SVM training relies heavily on the fact that at the optimal solution the cardinality of I_s is often much smaller than the total number of data points n. Hence, the cardinalities of I_0 and, possibly, I_c are expected to be large in comparison to I_s. If on Step 2(i) I'_0 and I'_c are large, while I_s is not very small, then the complexity of this step, which is $O(|I_s|(|I'_0| + |I'_c|))$, might become too high.

Let us assume for a moment that we know some of the indices that at optimality belong to I_c and I_0. Then we can place these indices in I'_0 and I'_c at the beginning of each Step 2. This can result in substantial savings
in the run time, since Step 2(i) requires $O((|I_s|(|I'_0| + |I'_c|))$ operations and $|I'_0| = |I_0| - |I''_0|$ and $|I'_c| = |I_c| - |I''_c|$. When all the reduced costs of variables whose indices are in I'_0 and I'_c are nonnegative, then so are the reduced costs of variables whose indices are in I''_0 and I''_c, due to our assumption about these two subsets.

Naturally, we usually do not know which indices will be in I_0 and I_c at optimality, however, to reduce the workload at each iteration we try to guess which indices are the most likely ones to end up in I_0 and I_c at optimality. We place such indices in I''_0 and I''_c sets, respectively. If we guess well, then after all the reduced costs for I'_0 and I'_c become nonnegative, hopefully, only a few reduced costs for I''_0 and I''_c are negative. Here we see a trade-off: if we select I''_0 and I''_c too small, then the computational saving is insignificant, and if we select I''_0 and I''_c too large, then some of large negative reduced costs might be missed and the the overall number of iterations might increase. Moreover, once all the dual variables with indices in I'_0 and I'_c are priced, then we have to price all variables with indices in I''_0 and I''_c, which are large. So it is important to choose I''_0 and I''_c in such a way that pricing the variables in I''_0 and I''_c does not occur too many times.

We will describe two possible strategies for maintaining sets I'_0, I'_c, I''_0 and I''_c. One strategy is very simple and is called shrinking in SVM literature [16]. At each iteration an index is placed in I''_0 or I''_c if its appropriate reduced cost remained nonnegative for a given number of consecutive iterations (say 100). According to this strategy the sets I'_0 and I'_c are large during the earlier iterations and become gradually smaller during the course of the algorithm. This nicely correlates with the fact that the size of I_s is very small in the earlier iterations I_s gets gradually larger during the course of the algorithm. It is often the case that maximum of $|I_s|(|I'_0| + |I'_c|)$ over all iteration is 3 or 4 times smaller than max{max{|$I_s|$} x max{|$I'_0|$ + |$I'_c|$}}. At the end one still has to price all the dual variables for I''_0 and I''_c, but only a few such iterations are usually needed.

The second strategy is called sprint in Linear Programming literature and was introduced by Forrest [9]. Sprint (sometimes also called sifting) has been proven to be very effective in practice for problems that contain large number of inactive constraints [21]. Following the sprint strategy we select a relatively small subset of dual variables with smallest (including negative) reduced costs and we form I'_0 and I'_c from the indices of those variables. Once the problems was solved for I'_0 and I'_c then the remaining constraints are priced again and the next relatively small sets of candidates are selected.
Pricing all remaining variables and choosing the next small subset is called a major iteration. According to this strategy I_0' and I_c' are always kept small, but the sets I_0'' and I_c'' have to be considered regularly throughout the algorithm. As long as the ratio of major iterations to the number of "cheap" iterations is small, the implementation will be efficient.

The table below shows that sprint outperforms shrinking in most cases, especially on larger, more difficult problems.

<table>
<thead>
<tr>
<th>Name</th>
<th>n</th>
<th>k</th>
<th>n_s</th>
<th>n_c</th>
<th>SVM-QP (shr)</th>
<th>SVM-QP</th>
</tr>
</thead>
<tbody>
<tr>
<td>web_100_100</td>
<td>24692</td>
<td>300</td>
<td>980</td>
<td>453</td>
<td>537</td>
<td>65</td>
</tr>
<tr>
<td>web_40_10</td>
<td>24692</td>
<td>300</td>
<td>1037</td>
<td>568</td>
<td>281</td>
<td>68</td>
</tr>
<tr>
<td>web_40_100</td>
<td>24692</td>
<td>300</td>
<td>1214</td>
<td>313</td>
<td>416</td>
<td>84</td>
</tr>
<tr>
<td>web_100_100</td>
<td>24692</td>
<td>300</td>
<td>679</td>
<td>835</td>
<td>124</td>
<td>40</td>
</tr>
<tr>
<td>letter_100_100</td>
<td>20000</td>
<td>16</td>
<td>241</td>
<td>39</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>letter_40_1</td>
<td>20000</td>
<td>16</td>
<td>250</td>
<td>266</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>letter_40_100</td>
<td>20000</td>
<td>16</td>
<td>346</td>
<td>8</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>letter_100_10</td>
<td>20000</td>
<td>16</td>
<td>193</td>
<td>146</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>letter_40_10</td>
<td>20000</td>
<td>16</td>
<td>320</td>
<td>57</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>letter_lin_100</td>
<td>20000</td>
<td>16</td>
<td>17</td>
<td>1056</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>ocr_256_100</td>
<td>7291</td>
<td>256</td>
<td>378</td>
<td>0</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>ocr_256_100</td>
<td>7291</td>
<td>256</td>
<td>309</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>abalone_4_100</td>
<td>4177</td>
<td>10</td>
<td>64</td>
<td>1863</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>abalone_p5_100</td>
<td>4177</td>
<td>10</td>
<td>304</td>
<td>1520</td>
<td>31</td>
<td>22</td>
</tr>
<tr>
<td>spam_300_100</td>
<td>4601</td>
<td>58</td>
<td>1417</td>
<td>181</td>
<td>80</td>
<td>64</td>
</tr>
<tr>
<td>spam_lin_100</td>
<td>4601</td>
<td>58</td>
<td>58</td>
<td>822</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>adult_100_1</td>
<td>16100</td>
<td>123</td>
<td>97</td>
<td>5996</td>
<td>89</td>
<td>81</td>
</tr>
<tr>
<td>adult_100_100</td>
<td>16100</td>
<td>123</td>
<td>871</td>
<td>4823</td>
<td>253</td>
<td>175</td>
</tr>
<tr>
<td>adult_200_1</td>
<td>16100</td>
<td>123</td>
<td>168</td>
<td>5785</td>
<td>95</td>
<td>85</td>
</tr>
<tr>
<td>adult_200_100</td>
<td>16100</td>
<td>123</td>
<td>483</td>
<td>5219</td>
<td>107</td>
<td>140</td>
</tr>
<tr>
<td>adult_50_10</td>
<td>16100</td>
<td>123</td>
<td>615</td>
<td>5143</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

4.2 Memory Saving Version

We now discuss the memory saving version. SVMlight has an elegant scheme, where the kernel values are stored in cache according to their most recent usage. The size of the cache is dictated by the user. In the experiments discussed above we allowed the size of the cache to be 500MB, which is at least as much memory as was used by SVM-QP.
We did not implement such sophisticated memory handling mechanism in our code. Luckily *sprint* provides a natural setting for a memory saving mode. Instead of storing the whole Q_s we only store the elements of Q whose columns are in I_s and whose rows are in $I_s \cup I'_0 \cup I'_c$. The size of $I'_0 \cup I'_c$ can be regulated according to the available storage space. At each major iteration all the elements of Q_s whose row indices are in $I'_0 \cup I'_c$ have to be recomputed. This can be a costly step. To further try to reduce the computational cost of that step, we apply *shrinking* to $I'_0 \cup I'_c$. That is, if during a few consecutive major iterations a certain reduced cost remained nonnegative then the appropriate variable is removed from $I'_0 \cup I'_c$ and is ignored until the later stage of the algorithm. In the table below we present our results. We chose the size of I'_0 and I'_c to be 50 each, this way the total storage for the elements of Q_s (including Q_{ss}) did not exceed 20MB. We compare our CPU time to that of SVMlight with 20MB of cache limit. We also list the CPU times for the version of SVM-QP that stores the full Q_s, to demonstrate the trade-off between the CPU time and memory requirement.

<table>
<thead>
<tr>
<th>Name</th>
<th>n</th>
<th>k</th>
<th>n_s</th>
<th>n_c</th>
<th>SVM-QP</th>
<th>SVM-QP$_{mem}$</th>
<th>SVM$^{light}_{mem}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>web$_{100,100}$</td>
<td>24692</td>
<td>300</td>
<td>980</td>
<td>453</td>
<td>65</td>
<td>428</td>
<td>1097</td>
</tr>
<tr>
<td>web$_{40,10}$</td>
<td>24692</td>
<td>300</td>
<td>1037</td>
<td>568</td>
<td>68</td>
<td>447</td>
<td>553</td>
</tr>
<tr>
<td>web$_{40,100}$</td>
<td>24692</td>
<td>300</td>
<td>1214</td>
<td>313</td>
<td>84</td>
<td>524</td>
<td>1201</td>
</tr>
<tr>
<td>web$_{100,10}$</td>
<td>24692</td>
<td>300</td>
<td>679</td>
<td>835</td>
<td>40</td>
<td>230</td>
<td>348</td>
</tr>
<tr>
<td>letter$_{100,100}$</td>
<td>20000</td>
<td>16</td>
<td>241</td>
<td>39</td>
<td>3</td>
<td>14</td>
<td>26</td>
</tr>
<tr>
<td>letter$_{40,1}$</td>
<td>20000</td>
<td>16</td>
<td>250</td>
<td>266</td>
<td>5</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>letter$_{40,100}$</td>
<td>20000</td>
<td>16</td>
<td>346</td>
<td>8</td>
<td>4</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>letter$_{100,10}$</td>
<td>20000</td>
<td>16</td>
<td>193</td>
<td>146</td>
<td>4</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>letter$_{40,10}$</td>
<td>20000</td>
<td>16</td>
<td>320</td>
<td>57</td>
<td>4</td>
<td>20</td>
<td>11</td>
</tr>
<tr>
<td>letter$_{lin,100}$</td>
<td>20000</td>
<td>16</td>
<td>17</td>
<td>1056</td>
<td>35</td>
<td>72</td>
<td>1052</td>
</tr>
<tr>
<td>ocr9$_{256,100}$</td>
<td>7291</td>
<td>256</td>
<td>378</td>
<td>0</td>
<td>5</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>ocr0$_{256,100}$</td>
<td>7291</td>
<td>256</td>
<td>309</td>
<td>0</td>
<td>4</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>abalone$_{A,100}$</td>
<td>4177</td>
<td>10</td>
<td>64</td>
<td>1863</td>
<td>5</td>
<td>13</td>
<td>78</td>
</tr>
<tr>
<td>abalone$_{P5,100}$</td>
<td>4177</td>
<td>10</td>
<td>304</td>
<td>1520</td>
<td>22</td>
<td>44</td>
<td>-</td>
</tr>
<tr>
<td>adult$_{100,1}$</td>
<td>16100</td>
<td>123</td>
<td>97</td>
<td>5996</td>
<td>81</td>
<td>171</td>
<td>228</td>
</tr>
<tr>
<td>adult$_{100,100}$</td>
<td>16100</td>
<td>123</td>
<td>871</td>
<td>4823</td>
<td>175</td>
<td>624</td>
<td>1541</td>
</tr>
<tr>
<td>adult$_{200,1}$</td>
<td>16100</td>
<td>123</td>
<td>168</td>
<td>5785</td>
<td>85</td>
<td>174</td>
<td>253</td>
</tr>
<tr>
<td>adult$_{200,100}$</td>
<td>16100</td>
<td>123</td>
<td>483</td>
<td>5219</td>
<td>140</td>
<td>173</td>
<td>1360</td>
</tr>
<tr>
<td>adult$_{50,10}$</td>
<td>16100</td>
<td>123</td>
<td>615</td>
<td>5143</td>
<td>120</td>
<td>355</td>
<td>593</td>
</tr>
</tbody>
</table>

20
4.3 Warm start

One of the significant advantages of active set methods over interior point methods is that the former can benefit very well from warm starts. For instance, if some additional labeled training data become available, the old optimal solution is used as a starting point for the active set algorithm and the new optimal solution is typically obtained within a few iterations. This will be explored in more detail in the subsection on the incremental mode of our algorithm.

Another situation where warm start arises, is when one wants to explore the path of optimal solutions for various values of penalty parameter C. In [14] the whole solution path is generated using an active set method similar to ours. There some differences between the two methods, however. The method in [14] is a parametric active set method, which in practice is usually slower than a purely primal or dual active set method, such as ours. Also their method requires that at each iteration an optimal solution of a parametric problems is available, hence there does not seem to be any possibility to use sprint or shrinking. It remains to be seen whether a good implementation of the algorithm in [14] can match the performance of our algorithm.

Our algorithm is not suitable to generating the entire parametric path, but using the warm starts one can easily use it to generate solutions for a selection of the values of parameter C.

The warm starts can also be used when one wants to explore different values of kernel parameters, but the efficiency of such application needs a separate computational study.

Here we investigate the use of warm start to increase the efficiency of the algorithm itself. It has been noticed (see [6], for example) that for many SVM problems the matrix Q has eigenvalues decaying to zero. It was suggested in [6] to use a low rank approximation of Q and solve the approximate problem with an interior point method using product form Cholesky factorizations, which benefit from the low rank of Q. Such approximations, however, are not always very accurate. The idea we explore here is to use the solution of the approximate problem to warm start the active set method.

If k is the rank of the approximation of Q, then per iteration complexity of the IPM is $O(nk^2)$. There is a trade-off in choosing the right value for k: if k is chosen to be too large, then the IPM will not be efficient and if k is too small then the solution produced by the IPM is too far from the optimal solution of the true problem. We chose $k = 50$, which is reasonably small
to make the IPM part fast and sufficiently large to hope for a good warm start. The results we obtained are not as dramatic as one might hope. Often the active set method itself is so fast that it outperforms the IPM even for \(k = 50 \), for instance on letter.x.x problems. In other cases the approximation does not produce a good enough warm start. There also cases where \(Q \) itself has very low rank and, hence, the problem can be solved to optimality just by the IPM; see letter.lin.100, for instance. There are examples however, where the combined method achieves better timing results than either method when used separately. This seem to happen for the problems with relatively large \(L \) sets, such as the adult.x.x problems. We have to note that we are using a rather crude implementation of the IPM for SVM. One might achieve better results with a more efficient implementation of an IPM.

<table>
<thead>
<tr>
<th>Name</th>
<th>(n)</th>
<th>(k)</th>
<th>(n_s)</th>
<th>(n_c)</th>
<th>SVM-QP (p)</th>
<th>SVM-QP</th>
</tr>
</thead>
<tbody>
<tr>
<td>web.100.100</td>
<td>24692</td>
<td>300</td>
<td>980</td>
<td>453</td>
<td>113</td>
<td>65</td>
</tr>
<tr>
<td>web.40.10</td>
<td>24692</td>
<td>300</td>
<td>1037</td>
<td>568</td>
<td>112</td>
<td>68</td>
</tr>
<tr>
<td>web.40.100</td>
<td>24692</td>
<td>300</td>
<td>1214</td>
<td>313</td>
<td>142</td>
<td>84</td>
</tr>
<tr>
<td>web.100.10</td>
<td>24692</td>
<td>300</td>
<td>679</td>
<td>835</td>
<td>82</td>
<td>40</td>
</tr>
<tr>
<td>letter.100.100</td>
<td>20000</td>
<td>16</td>
<td>241</td>
<td>39</td>
<td>36</td>
<td>3</td>
</tr>
<tr>
<td>letter.40.1</td>
<td>20000</td>
<td>16</td>
<td>250</td>
<td>266</td>
<td>38</td>
<td>5</td>
</tr>
<tr>
<td>letter.40.100</td>
<td>20000</td>
<td>16</td>
<td>346</td>
<td>8</td>
<td>49</td>
<td>4</td>
</tr>
<tr>
<td>letter.100.10</td>
<td>20000</td>
<td>16</td>
<td>193</td>
<td>146</td>
<td>33</td>
<td>4</td>
</tr>
<tr>
<td>letter.40.10</td>
<td>20000</td>
<td>16</td>
<td>320</td>
<td>57</td>
<td>44</td>
<td>4</td>
</tr>
<tr>
<td>letter.lin.100</td>
<td>20000</td>
<td>16</td>
<td>17</td>
<td>1056</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>ocr.9.256.100</td>
<td>7291</td>
<td>256</td>
<td>378</td>
<td>0</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>ocr0.256.100</td>
<td>7291</td>
<td>256</td>
<td>309</td>
<td>0</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>abalone.4.100</td>
<td>4177</td>
<td>10</td>
<td>64</td>
<td>1863</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>abalone.p5.100</td>
<td>4177</td>
<td>10</td>
<td>304</td>
<td>1520</td>
<td>10</td>
<td>22</td>
</tr>
<tr>
<td>spam.300.100</td>
<td>4601</td>
<td>58</td>
<td>1417</td>
<td>181</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>spam.lin.100</td>
<td>4601</td>
<td>58</td>
<td>58</td>
<td>822</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>adult.100.1</td>
<td>16100</td>
<td>123</td>
<td>97</td>
<td>5996</td>
<td>66</td>
<td>81</td>
</tr>
<tr>
<td>adult.100.100</td>
<td>16100</td>
<td>123</td>
<td>871</td>
<td>4823</td>
<td>125</td>
<td>175</td>
</tr>
<tr>
<td>adult.200.1</td>
<td>16100</td>
<td>123</td>
<td>168</td>
<td>5785</td>
<td>68</td>
<td>85</td>
</tr>
<tr>
<td>adult.200.100</td>
<td>16100</td>
<td>123</td>
<td>483</td>
<td>5219</td>
<td>92</td>
<td>140</td>
</tr>
<tr>
<td>adult.50.10</td>
<td>16100</td>
<td>123</td>
<td>615</td>
<td>5143</td>
<td>95</td>
<td>120</td>
</tr>
</tbody>
</table>
4.4 Incremental Mode

Incremental mode is used when the training data is available one point (or a few points) at a time. Our algorithm applies naturally and almost without change to the incremental mode. Whenever more data points become available, their indices get placed in set J_0, then Step 2(i) is applied to price the corresponding variables, and if a negative reduced cost is found, then the algorithm proceeds in the usual manner. The only difference with the batch case (when all data is available at once) is that the pricing is Step 2(i) cannot be applied to the data that is not available yet. Hence, the constraints with sufficiently negative reduced costs are not included, until their data points are added to the problem. As we show in the table below, this results in a dramatic increase of CPU time.

Notice, that the sifting does not make sense in the incremental mode, since it selects the sets I_0' and I_c' based on the entire data set. However, shrinking can be easily applied, since its selection of I_0' and I_c' is only based on the past behavior of each individual constraint.
<table>
<thead>
<tr>
<th>Name</th>
<th>(n)</th>
<th>(k)</th>
<th>(n_a)</th>
<th>(n_c)</th>
<th>SVM-QP</th>
<th>SVM-QP_{inc}</th>
</tr>
</thead>
<tbody>
<tr>
<td>web_100_100</td>
<td>24692</td>
<td>300</td>
<td>980</td>
<td>453</td>
<td>65</td>
<td>1388</td>
</tr>
<tr>
<td>web_40_10</td>
<td>24692</td>
<td>300</td>
<td>1037</td>
<td>568</td>
<td>68</td>
<td>1017</td>
</tr>
<tr>
<td>web_10_100</td>
<td>24692</td>
<td>300</td>
<td>1214</td>
<td>313</td>
<td>84</td>
<td>1190</td>
</tr>
<tr>
<td>web_100_10</td>
<td>24692</td>
<td>300</td>
<td>679</td>
<td>835</td>
<td>40</td>
<td>1101</td>
</tr>
<tr>
<td>letter_100_100</td>
<td>20000</td>
<td>16</td>
<td>241</td>
<td>39</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>letter_40_1</td>
<td>20000</td>
<td>16</td>
<td>250</td>
<td>266</td>
<td>5</td>
<td>37</td>
</tr>
<tr>
<td>letter_40_100</td>
<td>20000</td>
<td>16</td>
<td>346</td>
<td>8</td>
<td>4</td>
<td>34</td>
</tr>
<tr>
<td>letter_100_10</td>
<td>20000</td>
<td>16</td>
<td>193</td>
<td>146</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>letter_40_10</td>
<td>20000</td>
<td>16</td>
<td>320</td>
<td>57</td>
<td>4</td>
<td>39</td>
</tr>
<tr>
<td>letter_lin_100</td>
<td>20000</td>
<td>16</td>
<td>17</td>
<td>1056</td>
<td>35</td>
<td>43</td>
</tr>
<tr>
<td>ocr9_256_100</td>
<td>7291</td>
<td>256</td>
<td>378</td>
<td>0</td>
<td>5</td>
<td>27</td>
</tr>
<tr>
<td>ocr0_256_100</td>
<td>7291</td>
<td>256</td>
<td>309</td>
<td>0</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>abalone_4_100</td>
<td>4177</td>
<td>10</td>
<td>64</td>
<td>1863</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>abalone_p5_100</td>
<td>4177</td>
<td>10</td>
<td>304</td>
<td>1520</td>
<td>22</td>
<td>137</td>
</tr>
<tr>
<td>spam_300_100</td>
<td>4601</td>
<td>58</td>
<td>1417</td>
<td>181</td>
<td>64</td>
<td>414</td>
</tr>
<tr>
<td>spam_lin_100</td>
<td>4601</td>
<td>58</td>
<td>58</td>
<td>822</td>
<td>11</td>
<td>647</td>
</tr>
<tr>
<td>adult_100_1</td>
<td>16100</td>
<td>123</td>
<td>97</td>
<td>5996</td>
<td>81</td>
<td>372</td>
</tr>
<tr>
<td>adult_100_100</td>
<td>16100</td>
<td>123</td>
<td>871</td>
<td>4823</td>
<td>175</td>
<td>5882</td>
</tr>
<tr>
<td>adult_200_1</td>
<td>16100</td>
<td>123</td>
<td>168</td>
<td>5785</td>
<td>85</td>
<td>330</td>
</tr>
<tr>
<td>adult_200_100</td>
<td>16100</td>
<td>123</td>
<td>483</td>
<td>5219</td>
<td>140</td>
<td>1819</td>
</tr>
<tr>
<td>adult_50_10</td>
<td>16100</td>
<td>123</td>
<td>615</td>
<td>5143</td>
<td>120</td>
<td>2274</td>
</tr>
</tbody>
</table>

5 Concluding Remarks

Traditional active set methods for convex QPs were considered impractical for large-scale SVM problems. However, they have theoretical appeal for many reasons. In this paper we studied in details an active set method SVM and show that an efficient implementation can outperform other state-of-the-art SVM software.

Further direction of this work lies in a more comprehensive theoretical analysis of the behavior and complexity of the method for SVM problems.

Acknowledgment

The author is grateful to Alexandre Belloni for pointing out the paper [10] for handling the singular reduced QP system as well as for many fruitful discussions. The author is also grateful to John Forrest for suggesting the sprint technique.
References

