Tape systems scaling

 

The recording performance of a new magnetic tape based on ultra-fine, perpendicularly-oriented BaFe particles was investigated. Specifically, using a low lateral tape motion demonstration platform, a new servo pattern written on the advanced perpendicularly oriented BaFe medium, a new low friction head technology, a novel synchronous servo channel design, and advanced servo control concepts, we were able to demonstrate a record closed-loop track-follow performance with a 23.4 nm standard deviation of position-error signal, roughly one order of magnitude better than in current tape products.

In addition, using read back waveforms captured on the same advanced perpendicularly oriented BaFe medium with a 0.2-μm-wide data reader, we demonstrated write/read performance at 518 kbpi using advanced noise-predictive maximum likelihood (NPML) detection schemes. Combining these two results, we estimate that the new medium can support an areal recording density of up to 29.5 Gb/in2. This result demonstrates the scalability and extendability of tape technology using low-cost particulate media [2011-2].