TWO TRIANGLES

Let \(\triangle ABC \) be the outer triangle, and \(\triangle DEF \) be the inner one, so that \(D \in BC, \ E \in AC, \ F \in AB \). Denote \(\alpha = \angle FDB, \ \beta = \angle EFA, \ \gamma = \angle DEC \), and assume without loss of generality that

(0.1) \[\alpha \geq \beta \geq \gamma. \]

Denote \(\alpha' = \angle DFB, \ \beta' = \angle FEA, \ \gamma' = \angle EDC \). Clearly, \(\alpha' = 2\pi/3 - \beta, \ \beta' = 2\pi/3 - \gamma, \ \gamma' = 2\pi/3 - \alpha \), and hence

(0.2) \[\beta' \geq \alpha' \geq \gamma'. \]

Consider three triangles: \(\triangle BFD, \ \triangle AEF, \ \triangle CDE \). Let us superimpose the bases \(FD, \ EF, \) and \(DE \) with a horizontal segment \(PQ \). Then the vertices \(A, \ B, \ C \) lie on a upper semicircle centered at \(Q \). Let \(R \) be the tangent point of the line through \(P \) and the semicircle; \(R \) divides the semicircle into two arcs: the front one (which can be seen from \(P \)) and the back one.

There are two cases:
1) all angles of \(\triangle ABC \) are acute;
2) one of the angles of \(\triangle ABC \) is obtuse.

In the first case, all three points \(A, \ B, \ C \) lie on the back arc. By (0.1), their clockwise order along the semicircle is \(RCAB \), which contradicts (0.2) unless \(\alpha = \beta = \gamma \).

In the second case, one point lies on the front arc. By (0.1), this point is \(C \). Denote by \(C' \) the second intersection point of the line through \(P \) and \(C \) with the semicircle; by (0.2), the clockwise order of the points along the semicircle is \(CRABC' \).

Clearly, \(\angle PCQ + \angle PC'Q = \pi \). On the other hand, points \(A \) and \(B \) lie inside the circle through \(P, \ Q, \) and \(C' \), and hence \(\angle PAQ \geq \angle PC'Q, \ \angle PBQ \geq \angle PC'Q \). Consequently, \(\angle PCQ + \angle PAQ + \angle PBQ > \pi \), a contradiction.