IBM Research | Ponder This | September 2003 challenges
Skip to main content

Ponder This

September 2003

<<August September October>>

Ponder This Challenge:

This month's puzzle was submitted by Peter Beech.

For n>1 let P(x)= 1 + x1/1! + x2/2! + ... + xn/n! be the polynomial of degree n formed from the first n+1 terms of the power series for ex. When n is odd, this polynomial has one real root. Prove that this root is irrational for all odd n>1.

We will post the names of those who submit a correct, original solution! If you don't want your name posted then please include such a statement in your submission!

We invite visitors to our website to submit an elegant solution. Send your submission to the

If you have any problems you think we might enjoy, please send them in. All replies should be sent to:


Challenge: 09/03/03 @ 01:00 PM ET
Solution: 09/30/03 @ 01:00 PM ET
List Updated:

People who answered correctly:

Hagen von Eitzen (9.3.2003 @04:52:39 PM EDT)

Coserea Gheorghe (9.4.2003 @01:17:52 PM EDT)
Iqstar (9.4.2003 @05:00:00 PM EDT)
Dave Blackston (9.5.2003 @03:06:17 PM EDT)
David Friedman (9.5.2003 @03:48:21 PM EDT)
Joseph DeVincentis (9.5.2003 @10:05:42 PM EDT)
Patrick J. LoPresti (9.6.2003 @01:30:34 PM EDT)
Henry Shin (9.6.2003 @09:27:03 PM EDT)
Dmitry Litvinenko (9.6.2003 @01:32:27 AM EDT)
Dan Dima (9.8.2003 @10:45:50 AM EDT)
Mihai Cioc (9.9.2003 @12:03:32 PM EDT)
John G. Fletcher (9.9.2003 @09:14:17 PM EDT)
Ilan Algor (9.10.2003 @02:45:36 AM EDT)
Surendar Nanchary (9.10.2003 @11:59:00 AM EDT)
Francis Golding (9.10.2003 @12:10:47 PM EDT)
Clive Tong (9.10.2003 @04:34:00 PM EDT)
Andreas Knappe (9.15.2003 @04:19:00 AM EDT)
Karl D'Sousa (9.15.2003 @11:44:00 AM EDT)
R. Nandakumar (9.16.2003 @09:54:03 AM EDT)
Vineet Gupta (9.16.2003 @06:50:37 PM EDT)
Peter Huggins (9.17.2003 @05:43:53 PM EDT)
David Woodruff (9.19.2003 @08:56:23 PM EDT)
Sarang Aravamuthan (9.20.2003 @02:18:00 PM EDT)
Frank Mullin (9.24.2003 @09:20:32 AM EDT)

Attention: If your name is posted here and you wish it removed please send email to the