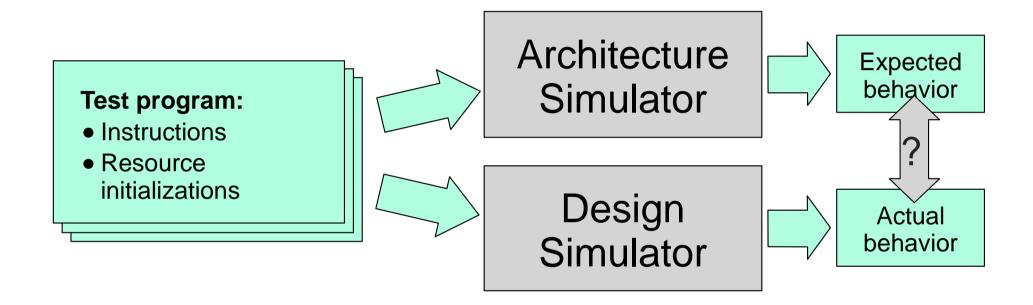
Using Constraint Satisfaction Formulation and Solution Techniques for Random Test Program Generation

Roy Emek

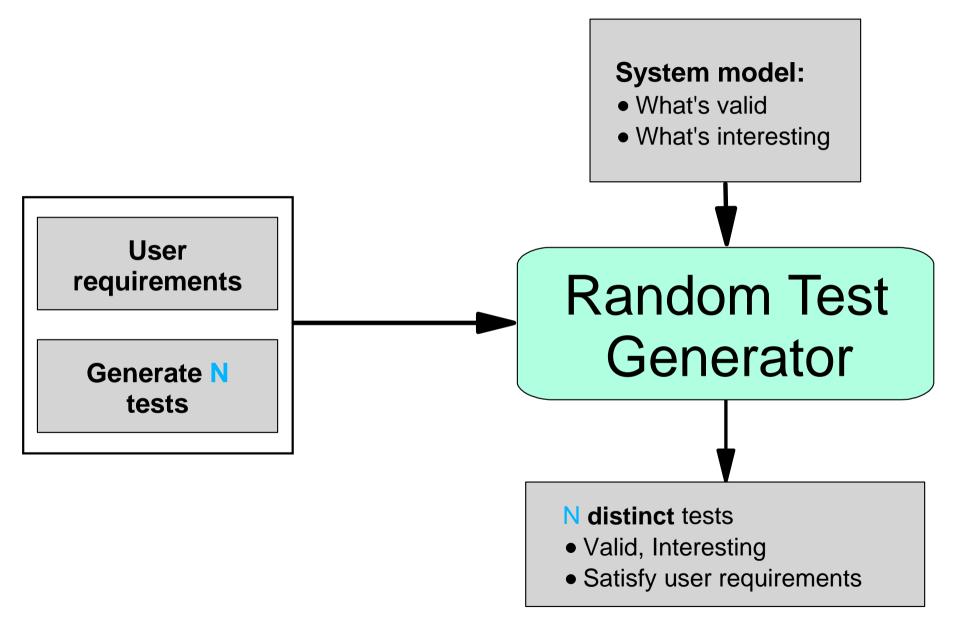
12-Sep-2002

IBM Research Lab in Haifa

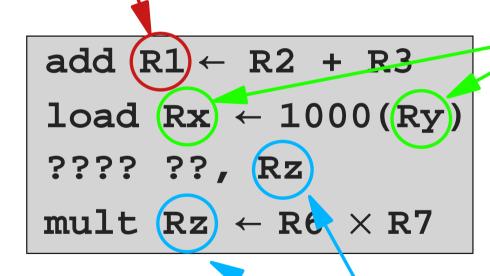
- Random test program generation
- Constraint Satisfaction Problems (CSP)
- Modeling test programs as CSP
- CSP for random test generation: characteristics
- Solution building blocks



Random Test Program Generator



Test Program Constraints



Validity: $\mathbf{x} \neq \mathbf{y}$

User request: same register

[Mackworth, Freuder, Montanari, Dechter, Rossi, ...]

- Variables of the problem
 - address, register_value
- Domain (set) for each variable
 - address: 0x0000 0xFFFF
 - number of bytes in a 'load': { 1, 2, 4, 8, 16 }
- Constraints (relations) over variables
 - (load n bytes) ⇒ (align address to n bytes boundary)
 - value(base_reg) + displacement = address

Solution for a CSP

- Every variable is assigned a value from its domain
- The assignments satisfy all the constraints

Example

- Variables: a, b, c
- Domains:

$$\blacksquare$$
 A = {1,2,3}; B = {2,3,4,5}; C = {1,3,5}

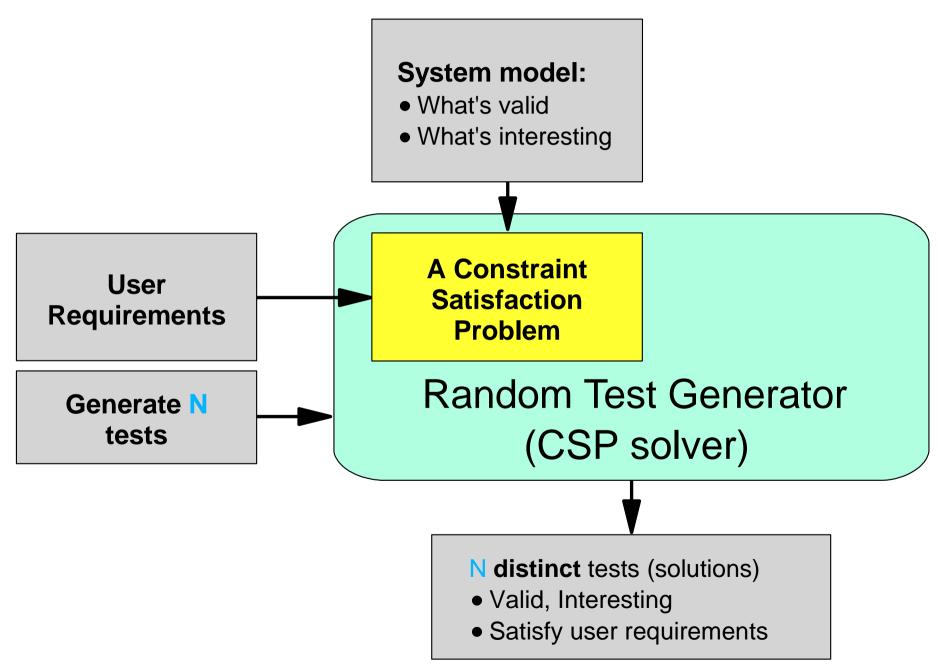
Constraints:

$$a^2 < b$$
; $c \ne b$; $a < c - 1$

Solution:

$$a = 1$$
; $b = 4$; $c = 3$

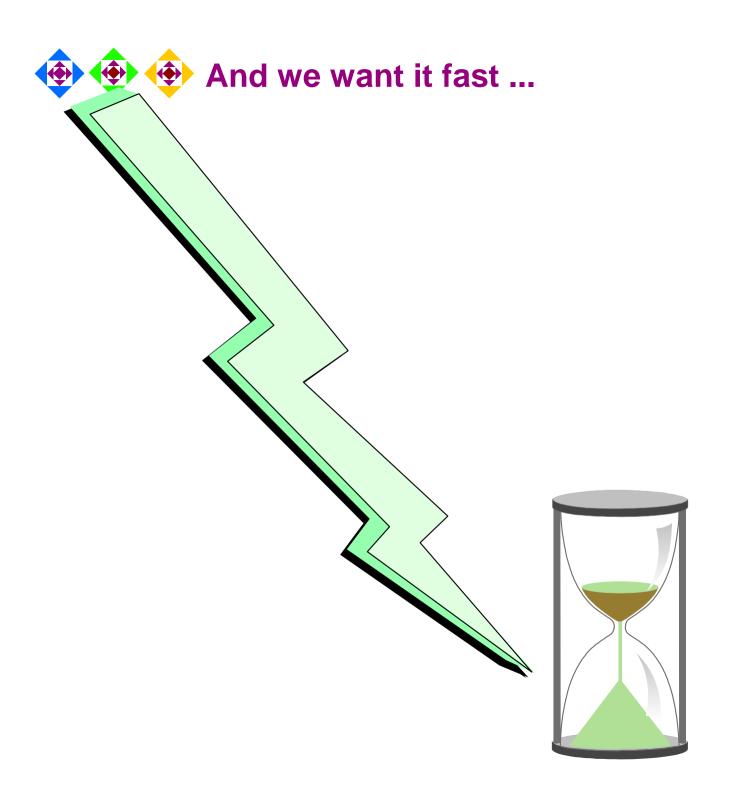
Random Test Program Generator (2)



Random, uniform distribution solution

[Yuan et al. '99, Dechter et al. '02]

- As opposed to one, all, or 'best' solution
- Huge domains: 2⁶⁴ and more
 - Example: address space
 - Representing and operating on large sets becomes an issue
- Hierarchy of constraints [Borning et al., '87]
 - Mandatory: test case validity
 - Non-mandatory: makes the test 'interesting'



Solution Algorithm: Consistency - A Single Constraint

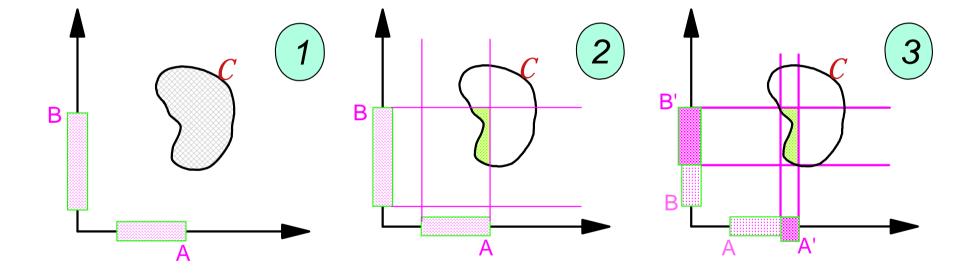
X
Y
Z
$$\{1, 2, 3\}$$
 $\{1, 2, 3\}$
 $\{1, 2, 3\}$
 $\{1, 2, 3\}$
 $\{1, 2, 3\}$
 $\{1, 2, 3\}$
 $\{1, 2, 3\}$
 $\{1, 2, 3\}$

[Mackworth, 1977]

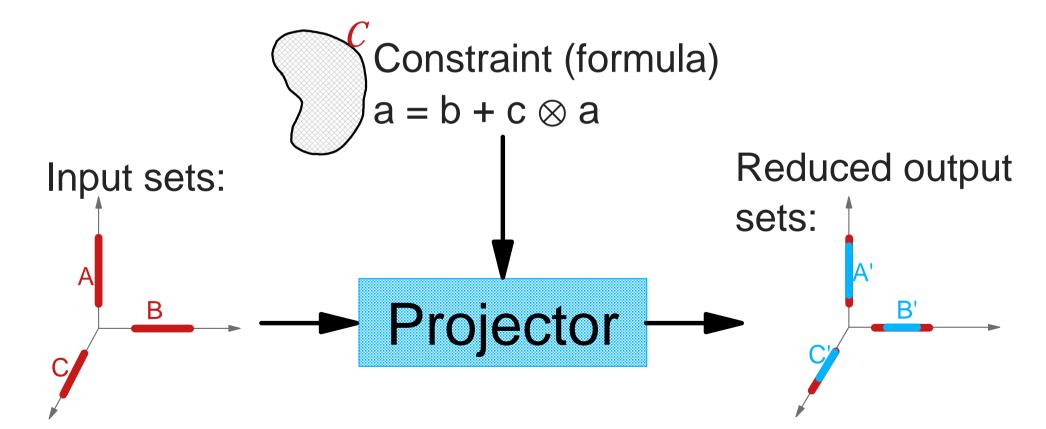
Arc = Constraint

The process: reducing domains to single-values

- 1. Make all constraints locally consistent
 - Some constraints are handled repeatedly
 - Achieve fixed-point
- 2. Choose a variable: address
- 3. Choose a value: $address \leftarrow 0x1234$
 - $-0x1234 \in domain (address)$
- 4. Go to step 1
- 5. On failure backtrack
 - Failure results in an empty set / domain



- MAC scheme projectors for constraints
- Developing arithmetic / logical / bit-wise projectors time after time again ?
 - a=b+c, a+b=c+d, a + b = c *bit-xor* d, ...
 - Error prone, labour intensive



Constraint: (a=b) \lor (b=a+c) \lor (c=3·a)

Domains: A={1,2,3}; B={3,4,5}; C={4,5}|

- (1) Project sub-constraints separately
- (2) Join* sub-constraints projections

	A	В	C
Input domain	{1,2,3}	{3,4,5}	{4,5}
a=b	{3}	{3}	-
b=a+c	{1}	{5}	{4}
c=3a	ϕ	-	ϕ
Results	{1,3}	{3,5}	{4,5}

Origin of the challenge: large H/W resources

- 128-bit registers
- 64-bit wide memory address space

All the addresses such that

```
    addr = base + displacement // architectural
    addr[3:6] = 01?1 // cache line
    addr ∈ [0x2000 : 0x10FFF] // memory space
```

'Masks' (DNF) representation:

 $-01?1 \rightarrow 0101, 0111$

- **■** 01010101 + 0?0?0?0? →
- The general case: a + b → 2^(n/2) clauses
- Coping with the problem
 - Binary Decision Diagrams (BDDs)
 - Sometimes: space explosion
 - Approximations

We only have partial solutions

- Viewing test generation as CSP
- Characteristics: random, huge domains
- Solution scheme
 - Consistency based
- HRL's test generators are CSP based
 - The basis for test generators for all the processors designed in IBM

Using Constraint Satisfaction Formulation and Solution Techniques for Random Test Program Generation

End of Presentation

12-Sep-02

IBM Research Lab in Haifa

Floating Point Operations – Stochastic Approach

- $a \cdot 2^a op b \cdot 2^\beta = c \cdot 2^\gamma$
 - op: +, -, ·, ...
 - Limited number of bits: non-continuous domain, rounding

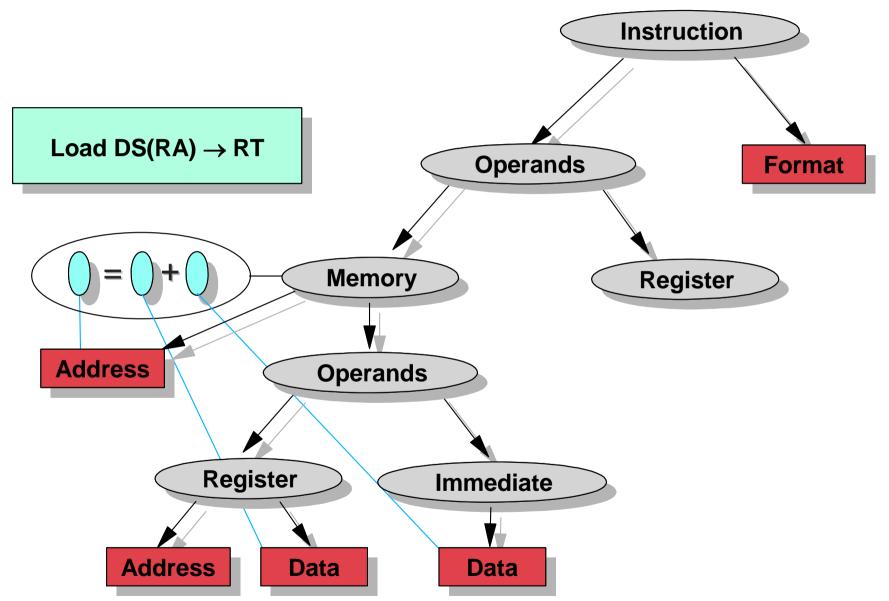
Constraints:

- 'op' itself
- bit #n = '0'
- Number of '1's = m
- $a \in [a_1 ... a_2]$

Stochastic solution scheme:

- assign random 64 × 3 bits
- Hill-climbing
 - Simple heuristics
 - Local maximum: flip random bits
 - After some time give up and start all over again

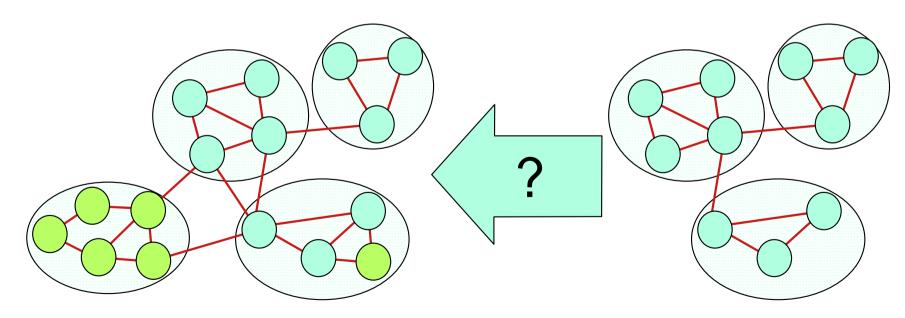
	mantissa:53	exp:11
	mantissa:53	exp:11
on-		
OP		
	mantissa:53	exp:11



Partitioning the problem

- Easier to model, easier to solve
- Hard to handle interdependencies

Dynamic problem structure



[Mackworth, Freuder, Montanari, Dechter, Rossi, ...]

- Variables of the problem
 - address, register_value
- Domain (set) for each variable
 - address: 0x0000 0xFFFF
 - number of bytes in a 'load': { 1, 2, 4, 8, 16 }
- Constraints (relations) over variables
 - (load n bytes) \Rightarrow (align address to n bytes boundary)
 - value(base_reg) + displacement = address
 - last_instruction = "branch" ?
 - yes: PC = branch-target
 - no : PC = increase (last_instruction_address)