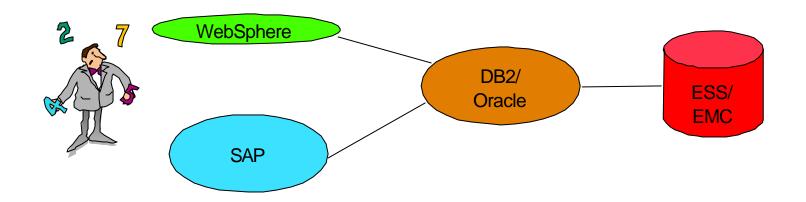
Performance Modeling of Storage

Ariel Landau Nava Aizikowitz Daniel Fishkov Bilha Mendelson


November 21, 2002

Background

- Application stack components:
 - Application Database Storage
- Existing configuration tools
 - adjust each component separately
 - are complicated
 - require high expertise
 - focus on ease-of-administration rather than performance
- None for the application stack as a whole

Our Goal

- Address performance issues of system-level interactions in application stacks
 - Focus on I/O aspects
- Provide knowledge and tools for the development and integration of improved performance policies
- Expected interest
 - Performance-tuning experts
 - Marketing teams
 - Architects

- Storage performance model
 - Simulation-based
- Performance of system-level interactions
 - Feed storage model with I/O traces from real and synthetic hosts
- Impact of I/O on performance
 - Analyze sensitivity to configurations
 - Data placement

- Building actual environment for measurements
 - A model is more flexible and amenable to modifications
 - ► A modeling solution can address future directions
- Analytic queuing model for steady state behavior
 - ► A simulation model captures dynamic behavior

Current Status

- Storage performance model working prototype
 - Configured to represent ESS
 - Focused on Open System hosts, Fibre Channel attachments and RAID-5

Stack analysis

- Tracing of DB2 I/O on AIX
- ► Through AIX trace facility
- Experimetation with
 - data placement
 - host configuration

Storage Performance Model

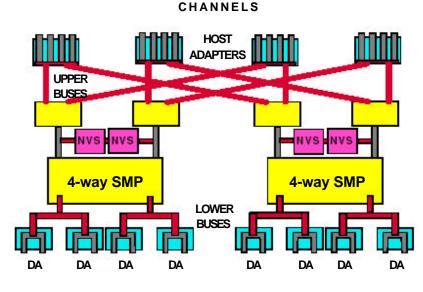
- Simulation-based queuing model
 - ► Built on top of CSIM simulation engine
 - Receives request attributes
 - read/write
 - target address
 - data amount
 - time stamp
 - channel
 - Simulates transaction processing paths
 - read, fast write, prestage, destage
 - Collects relevant statistics

Model Paths

Read

- Cache hit due to prestaging
- Data staging due to cache miss

Write


Fast write into non-volatile storage (NVS) and cache

Prestage

Data staging triggered by sequential read pattern

Destage

Flushing of cache written data to storage triggered by NVS and cache thresholds

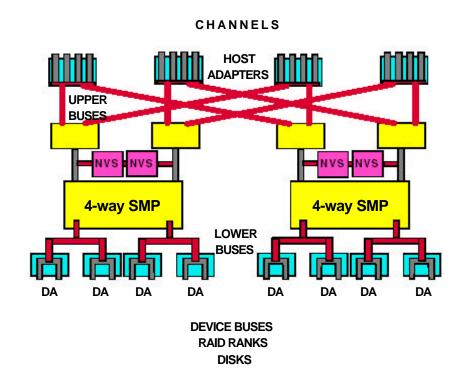
DEVICE BUSES RAID RANKS DISKS

Detailed per-resource output

- Utilization
- Interarrival times
- Service times

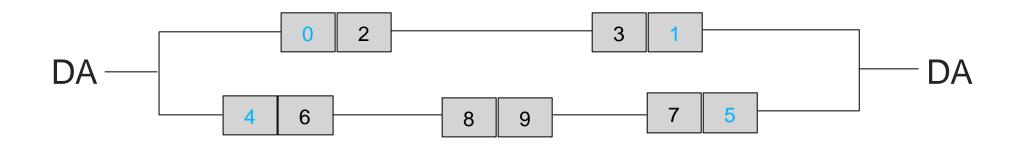
Configurable statistical output

- Transaction response time
- ▶ Data throughput
- Cache-hit rates


facility name	service disc	service time	util.	through- put	queue length	response time
CHAN O	fcfs	51,47727	0.000	0.00000	0.00012	52,26980
CHAN 1	fcfs	49,21096	0.002	0.00003	0.00160	50,24845
CHAN 4	fcfs	62,04545	0.000	0.00000	0.00008	65,53918
CHAN 5	fcfs	55,66645	0.005	0.00008	0.00467	57,52539
CHAN 8	fcfs	91,00000	0.000	0.00000	0.00003	91,00000
HA O	fcfs	63,58651	0.000	0.00000	0.00015	65,31378
HA 1	fcfs	63,57987	0.002	0.00003	0.00204	64,19720
HA 4	fcfs	89,70000	0.000	0.00000	0.00015	94,36667
HA 5	fcfs	65,50598	0.005	0.00008	0.00553	66,59390
HA 8	fcfs	104.00000	0.000	0.00000	0.00007	104,00000
UPBUS 0	fcfs	23,05805	0.002	0.00007	0.00161	23,53411
UPBUS 1	fcfs	26,28246	0.004	0.00017	0.00468	27,67147
UPBUS 2	fcfs	30,50000	0.000	0.00000	0.00004	30,50000
SMP 0	fcfs	181,93348	0.025	0.00014	0.03330	239,55201
> server	0	169,52879	0.021	0.00012		
> server	1	259,36551	0.003	0.00001		
> server	2	272,17193	0.001	0.00000		
> server	3	327,40426	0.001	0.00000		
SMP 1	fcfs	171,26770	0.009	0.00005	0.01024	191,40590
> server	0	164,53591	0.008	0.00005		
> server	1	237,23529	0,001	0.00000		
> server	2	219,40000	0.000	0.00000		
> server	3	340,00000	0.000	0.00000		
DA O	fcfs	306,51122	0.013	0.00004	0.09599	2265,56512
DA 1	fcfs	215,29003	0.004	0.00002	0.01497	856,25929
HDD 0	fcfs	5128,28721	0.004	0.00000	0.00604	8165,79142
HDD 2	fcfs	5178,70855	0.002	0.00000	0.00164	5178,70859
HDD 3	fcfs	4973,74915	0.024	0.00000	0.02796	5752,09267

Model Flexibility

- ► May represent different storage subsystems (ESS, EMC)
 - Configurable collection of resources
 - Configurable time overheads for each resource


```
Resources
#define CHAN_NUM 16
#define HA_NUM 16
#define UPBUS_NUM 4
#define SMP_NUM 2
#define CPU_NUM 4 // CPUs per SMP
#define NVS NUM 2
#define LOWBUS_NUM 4
#define DA NUM 8
#define DEVBUS NUM 32
#define HDD_NUM 384
// Overhead values for Ess Fxx Fibre1
// (in microseconds)
#define CHAN OVHD 46
#define HA OVHD 104
#define HA_ONBUS_OVHD 8
#define HA CLNUP 50
#define HA CLNUP ONBUS 50
#define SMP_CLNUP 20
#define SMP_CLNUP_ONBUS 6
#define SMP OVHD 110
#define SMP_ONBUS_OVHD_50
#define NVS_OVHD 390
#define SMP_ALLOC_OVHD 100
#define DA_OVHD 333
#define NVS_ASYNCH_OVHD 160
```


Example - Data Placement

- Assignment of Logical Volumes (LV) to RAid-5 Ranks (RR)
- An example

- ▶ "blue" RRs are 6 + P + S
- ► "black" RRs are 7 + P
- "even" RRs are handled by cluster 0
- "odd" RRs are handled by cluster 1

Data Placement - Results

Semi-synthetic database trace with intensive I/O bursts

Configuration	Average Read	Improvement (w.r.t.
	Response Time (ms)	previous configuration)
Empty-system read-miss	11	
One LV	43	
6+P RR		
One LV	35	19%
7+P RR		
Two LVs	23	34%
Two 7+P RRs		
Same cluster		
Two LV	21	9%
Two 7+P RRs		
Different clusters		

Join I/O requests

Example

Timestam	p LV	Blk-Add	Amou	nt
▶ 920433	0	BF168	1000	READ
922033	0	BF190	1000	READ
923916	0	BF198	3000	READ
924154	0	BF1B0	4000	READ
924531	0	BE200	1000	READ
925755	0	BE210	3000	READ

Join I/O requests if

consecutive in space - space difference (SD) = 0

Example

SD	nt	Amour	Blk-Add	np LV	Timestam
	READ	1000	BF168	0	▶ 920433
	READ	1000	BF190	0	922033
0	READ	3000	BF198	0	923916
0	READ	4000	BF1B0	0	924154
30	READ	1000	BE200	0	924531
8	READ	3000	BE210	0	925755
	READ	8000	BF190	0	▶ 924154

Join I/O requests if

- consecutive in space space difference (SD) = 0, and
- ▶ not too "close in time" timestamp difference (TD) > 10 us

Example

TD	SD	nt	Amour	Blk-Add	p LV	Timestam
		READ	1000	BF168	0	▶ 920433
		READ	1000	BF190	0	922033
1883	0	READ	3000	BF198	0	923916
238	0	READ	4000	BF1B0	0	924154
377	30	READ	1000	BE200	0	924531
1224	8	READ	3000	BE210	0	925755
		READ	8000	BF190	0	▶ 924154

Join - Results

Semi-synthetic database trace with intensive I/O bursts

Configuration	Number of Joins	Average Read Response Time (ms)	Improvement (w.r.t. base configuration)
Base Trace		39	
All Joins	60	35	9%
Safe Join	33	32	18%
Best Join	50	29	26%

- Extend storage model
- Extend analysis of application stack
- Integrate into network performance model
- Integrate with monitoring environment
- Develop modeling-based reasoning