Practical Methods in Coverage-Oriented Verification of the Merom Microprocessor

Alon Gluska
Agenda

- Merom microprocessor and its verification
- Coverage-Driven Verification (CDV) and its drawbacks
- Merom Coverage-Oriented Verification
- Practical methods in Merom coverage
- Results and summary
Agenda

- Merom microprocessor and its verification
- Coverage-Driven Verification (CDV) and its drawbacks
- Merom Coverage-Oriented Verification
- Practical methods in Merom coverage
- Results and summary
Merom Microprocessor

Intel’s Core™ Duo 2 Microarchitecture
- New foundation for desktop, mobile and server multi-core processors
- Designed by Mobile Microprocessor team in Haifa, Israel

Energy-efficient performance
- 64-bit architecture, wider pipeline, instruction fusion, improved vector parallelization, incremental CPU power states

Significantly higher performance and lower power than competition

Dual and Quad core, with shared second-level caches

Design and shipment ahead of schedule
Merom Verification at a Glance

Modular verification
- Design & verification divided into 6 clusters
- Most verification, and most coverage, at the cluster level
 - Cluster level testbenches
 - Scalable checking, monitoring, functional coverage
- Verification at Full-Chip level
 - Architectural compliance and coverage
 - Compensate for cluster interface weaknesses
- Verification at platform level
 - Co-simulation with chipset

Formal verification
- Applied selectively according to complexity and capacity
- Reduced the need for coverage-based quality indicators
Agenda

1. Merom microprocessor and its verification
2. Coverage-Driven Verification (CDV) and its drawbacks
3. Merom Coverage-Oriented Verification
4. Practical methods in Merom coverage
5. Results and summary
Functional coverage

- Widely known as a means of measuring the quality of verification
- Derived manually from logic specifications
- Systematically create a comprehensive list of conditions
 - Verify each is hit during simulation
- Steer test generation towards holes
- Quantitative way of measuring the progress of verification
- A means for quality, not a goal
 - Bugs may exist outside the coverage space
Coverage-Driven Verification (CDV)

Coverage is the primary driver of verification
- Adopted from day one
- Main metric for completion

Drawbacks in early adoption
- Focus should be on finding bugs
- Lack of detailed knowledge
- Instability of design and uArch spec
- Incompleteness of coverage space
Agenda

- Merom microprocessor and its verification
- Coverage-Driven Verification (CDV) and its drawbacks
- **Merom Coverage-Oriented Verification**
- Practical methods in Merom coverage
- Results and summary
Merom Coverage-Oriented Verification

- Practical trade-offs for highest return on investment
 - Reduced scope and target high risk areas
- Delayed applying coverage to the latter stage
 - Stage I: basic cleanup, kept full-chip model functional
 - Stage II: development and analysis of functional coverage
- Overcomes major drawbacks of CDV
 - Basic bugs have already been flushed out
 - Design and uArch specs have stabilized
 - Engineers have acquired fundamental knowledge
Invest in random capabilities to fill in testing space
- Random testing enables hitting Unknown cases
Coverage Guidelines (2)

- Write coverage-friendly test plans
 - Easy and accurate translation into coverage monitors
 - Formal definition of coverage cases

- Develop coverage hierarchically
 - Higher abstraction of coverage monitors
 - Facilitates maintenance and reuse of lower level events

Coverage monitors

- Cluster-level events
- Unit-level events
- Function events

Event and Signal library

DUT
Agenda

Merom microprocessor and its verification
Coverage-Driven Verification (CDV) and its drawbacks
Merom Coverage-Oriented Verification
Practical methods in Merom coverage
Results and summary
Reduced coverage space based on prioritization

- Complexity and risk
- Controllability: reach-ability from testbench boundaries
- Intensity of testing
- Use of other techniques

Implemented only high-priority coverage

- Major reduction in coverage space, low impact on quality
- ~60% of test plan dropped from coverage space
Merom Coverage Methods (2)

- Frequency coverage of Basic Events
 - Statistical approach to maintain balance between events
 - Simple, tool supported approach

- Automatic toggle coverage for Functional Boundaries
 - Simple, automatically generated for interface signals

- Coverage for Clock Gating logic
 - Simple monitors, automatically generated from HDL

- Reduced space by merge of similar events
 - Merged coverage from identical components (e.g. decoders)
Merom Coverage Methods (3)

On-going use of fresh coverage data
- Sliding Window – merge coverage from last 4 weeks
- Eliminated use of stale data or need for resets

Targets and weights defined per monitor
- Used for hierarchical indicators
- Visually reflected priority of coverage holes

\[G_i = \frac{e_i}{E_i} \cdot \min\left(\frac{p_i}{P_i}\right) \]

\[G = \sum W_i G_i \]
Agenda

- Merom microprocessor and its verification
- Coverage-Driven Verification (CDV) and its drawbacks
- Merom Coverage-Oriented Verification
- Practical methods in Merom coverage
- Results and summary
Coverage Tracking

Coverage indicators climbed quickly

Coverage drops when major changes are made to monitors
Results

Bugs found by coverage activities

- ~80 bugs, ~8% of bugs in relevant period
 - 42 directly, not uniformly distributed
 - At least similar number found indirectly
 - Improved knowledge, fixed flaws in tests and testbenches
- Most bugs involved temporal behavior or multi-cluster
- >100 bugs in verification infrastructure

Coverage perceived very important by engineers

- Enforced learning of low-level details
- Contributed to quality of testing
Summary

Applied Coverage Oriented Verification
- Practical trade-offs, used in the latter stage of the project

Improved random testing to fill-in coverage holes

Multiple techniques to improve effectiveness
- Prioritized coverage
- Automatic monitors for logic boundaries
- Automatic merge of similar events
- Grading and visualization of holes

Bugs detected by coverage activities
- ~8% of RTL bugs, significant testbench enhancements

Coverage contributed to very successful verification
- Relatively few escapes found in silicon
- Enabled pull-in of tape-out and production