Light-weight Leases for Large Scale Coordination

Dahlia Malkhi
The Hebrew University of Jerusalem

Joint work with Grisha Chockler
Formerly at Hebrew U and IBM research
Presently at MIT
A storage system

Agreement

Exclusive access
Adding a SAN manager

consensus manager

lease manager
A distributed SAN manager

consensus manager

lease manager

IBM Storage Seminar
03
Dahlia Malkhi
Our approach: Storage-centric
Advantages

- Data management is exactly where the data itself is placed
 - As available as the data
 - No bottleneck servers
 - Autonomous management of each data object
- Minimal requirements on storage servers
- Suitable for large scale internet services
A storage system

lease manager

web
The **storage centric** approach to high-availability internet services

- Shared object, manipulated by clients
- Replicas of the object reside in each server
- Client coordination is done using three phase commit
- Several important features:
 - No server monitoring
 - Freedom of choice per object of:
 - replication group
 - failure threshold
 - quorum system
 - and more
 - Replicas are not aware of each other
 - Messages are sent only to the relevant servers
Shared memory mutual exclusion

- Possible from a single **strong** object (e.g., compare&swap)
 - Not suitable for generic storage servers
 - Impossible for distributed/replicated storage with faults
- Possible from read/write registers for \(n \) clients (e.g., Bakery)
 - Does not scale with \(n \)
- Possible from a single read/write register using **timing**
Fischer’s mutual exclusion

1: do
2: read x into temp
3: until temp == no-proc
4: x := p
5: wait delta
6: if (x != p) goto 1
--- Critical Section ---
7: x := no-proc

No fault tolerance
Adding expiration

1: do
2: read x into temp
3: until temp == <no-proc, 0> or temp has not changed for Omega
4: x := <p, counter++>
5: wait delta
6: if (x != <p, *>) goto 1
--- Critical Section ---
7: x := <no-proc, 0>
Renewal

1: do
2: read x into temp
3: until temp == <no-proc, 0> or temp has not changed for Omega

3: if (x != <p, counter> return false
4: x := <p, counter++>
5: wait delta
6: if (x != <p, *>) goto 1 return false
--- Critical Section ---
7: x := <no-proc, 0>
Lease properties

- Recoverable
- Renewable
- Uniform

Preliminary performance analysis:

- No contention: 1 read + 1 write + 1 delta
- N contending processes: the above + log N
- Probability of safety violation: $\ln \left(\frac{1}{1 - e^{-\text{delay}}} \right)$
The ΠΑΞΟΣ Approach [Lamport]

- Assume a weak leader election primitive
 - Eventually there is a unique leader
 - Ω failure detector, partially synchronous/timed asynchronous systems, etc.

- To order operations, the leader invokes an instance of the agreement protocol
 - Never disagree on the operation order
 - Might fail to make progress if there is no unique leader
Leases: a fundamental building-block in Agreement

- Reliable shared object
- Coordination
- Fail-prone storage units
The end.